Clocks and Timing Circuits

3 LS =
Output{ﬁ 1 S5 lc
o.m,ﬂTT -

Work element: Study the wori(mg af)
555 and 74123, and understand the differerit’ with theoretical value. Conduct similar exet-
input outputs. From above relations, calculate cise for 74123 based circuit as shown. Repeat
the resistance and capacitance values. See the the experiment with other combinations of re-
waveform in oscilloscope. Calculate duty-cys -~ - - sistanee and capacitance values.

from the osc;lloscope readmg and compare

1. Aninputis sensmveta?’[‘s andthecmuxt*- 7.7 -tho phase shif¥). nverting: 180"phasesh1ﬁ
- Output changes “synchrondusly with PTS. ~ 7 ‘betiveen mputandoutput '
The circuit output changes in. synchromsm 8. Schmitt triggers can be used 1o clean up a
~ withNTs. . ' 7 vieigy signal or‘to change a signal having
2. It means that'a cireuﬂ mwt.m oa slow nsetame mtowe havmg a fast rise
PTs. (SeeFig: 7.6b) 7 “iin i s “timer
3. The Togic symbot for an mmﬁsehszﬁve to A citeuit: has twe out;m staics neniher of

NTs is a bubble in front of a dynamacmpm : ' whlchlsstable :
‘indicator. (SeeFig: 7.7b) S T
4. A series mode offers low 1mpedance 1L TInversely :
at resonance, thus prowdmg positive 12. A circuit has two output states, one of
feedback for oscillation. A parallel mede " which is stable.
offers high impedance at resonance, and’ 13. True
thus provides msuﬁiment feedback to 14. The stable state is low.
.. . produce:oscillation; - : SR & Nomeﬁggnable
85 [hwassmy ’I’héysinply simaiﬁiealoadv Coeeles TR T
‘ R I A 1 X ‘
‘6*.??{1 meaas that ﬁle cirouit has two mpm i 180 'Gmchesmthemwanwdpnlsesappeanng
"+ threghold i voltage « levels—an upper: . at the output of a gate when-two or more
- threshold ~and ' 4 lower threshold. "By~ > - inputs change state simultaneously.
% gontrast, asiﬁﬁemvmmaniyasmgle 77190 A strobe pulse 1sapulseumedtoehm1nate
‘ ﬂﬁesholdvdi&gelevel. e PO ghlaches

17 Nonitiverting: the *input and ' output are
both high (or both low) at the same time

—e—-e . B

Flip-Flops

Describe the operation of the basic RS flip-flop and explain the purpose of the
additional input on the gated (clocked) RS flip-flop

Show the truth table for the edge-triggered. RS ilip-flop, edge-triggered D flip-flop,
and edge-triggered |K flip-flop

Discuss some of the timing problems related to flip-flops

Draw a diagram of a JK master-slave flip-flop and describe its operation

State the cause of contact bounce and describe a solution for this problem

Describe characteristic equations of Flip-Flops and analysis techniques of sequential
circuit

Describe excitation table of Flip-Flops and explain conversion of Flip-Flops as synthesis
example

+ +E+e o+ 4

The outputs of the digital circuits considered previously are dependent entirely on their inputs. That is, if
an input changes state, output may also change state. However, there are requirements for a digital device
or circuit whose output will remain unchanged, once set, even if there is a change in input level(s}). Such
a device could be used to store a binary number. A flip-flop is one such circuit, and the characteristics of
the most common types of flip-flops used in digital systems are considered in this chapter. Flip-flops are
used in the construction of registers and counters, and in numerous other applications. The elimination of
switch contact bounce is a clever application utilizing the unique operating characteristics of flip-flops. In a
sequential logic circuit flip-flops serve as key memory elements. Analysis of such circuits are done through
truth tables or characteristic equations of flip-flops. The analysis result is normally presented through state

Flip-Flops @

table or state transition diagram and also through timing diagram. Conversion of flip-flop from one kind to
another can be posed as a synthesis problem where flip-flop excitation tables are very useful.

. 8.1 RS FLIP-FLOPS '

Any device or circuit that has two stable states is said to be bistable. For instance, a toggle switch has two
stable states. It is either up or down, depending on the position of the switch as shown in Fig. 8.1a. The switch
is also said to have memory since it will remain as set until someone changes its position.

A flip-flop is a bistable electronic circuit that has two stable states—that is, its output is either 0 or +5
Vdc as shown in Fig. 8.1b. The flip-flop also has memory since its output will remain as set until something
is done to change it. As such, the flip-flop (or the switch) can be regarded as a memory device. In fact, any
bistable device can be used to store one binary digit (bit). For instance, when the flip-flop has its output set
at 0 Vdc, it can be regarded as storing a logic (and when its output is set at +5 Vdc, as storing a logic 1. The
flip-flop is often called a latch, since it will hold, or latch, in either stable state.

e e
e —Vee I I
I I 1] Output = 1| Output
- 1
1
Jutput N GQutput 0 Vde +5 Vde
State 0 State 1 State 0 State 1

(a} Toggle switch {b) Flip-flop

Bistable devices

Basic Idea

One of the easiest ways to construct a flip-flop is to connect two inverters in series as shown in Fig. 8.2a. The
line connecting the output of inverter B (/NV B) back to the input of inverter 4 (INV 4) is referred to as the
Sfeedback line.

For the moment, remove the feedback line and consider V| as the input and V5 as the output as shown in
Fig. 8.2b. There are only two possible signals in a digital system, and in this case we will define L=0=0
Vdc and H=1=+3Vdc. If V] is set to 0 Vdc, then V5 wilt also be 0 Vdc. Now, if the feedback line shown in
Fig. 8.2b is reconnected, the ground can be removed from V7, and V3, will remain at 0 Vdc. This is true since
once the input of INV A is grounded, the output of INV B will go low and can then be used to hold the input
of INV A low by using the feedback line. This is one stable state—}3 = 0 Vdc.

Conversely, if ¥} is +5 Vdc, V3 will also be +5 Vdc as seen in Fig. 8.2¢c. The feedback line can again be
used to hold ¥} at +5 Vdc since F3 is also at +5 Vdce. This is then the second stable state— V5 = +5 Vdc.

NOR-Gate Latch

The basic flip-flop shown in Fig. 8.2a can be improved by replacing the inverters with either NAND or NOR
gates. The additional inputs on these gates provide a convenient means for application of input signals to

@ Digital Principles and Applications

Feedback line

" £ ¥
INV INV B

(a) Bistable circuit

¥, =0 Vde V, =+5 Vdc V,=0Vdc
INV INVE

L g

]

b
¥, =+5Vde ¥,=0Vdc Vy;=+5Vde
e o—INV INVE
(c)

(@9 Hg.B.2) Bistable circuit

switch the flip-flop from one stable state to the other. Two 2-input NOR gates are connected in Fig. 8.3a to

form a flip-flop. Notice that if the two inputs labeled R and § are ignored, this circuit will function exactly as
the one shown in Fig. 8.2a.

Y,

NOR 4 §

NOR B

This circuit is redrawn in a more conventional form in Fig. 8.3b. The flip-flop actually has two outputs,
defined in more general terms as Q and Q . It should be clear that regardless of the value of , its complement
is O . There are two inputs to the flip-flop defined as R and S. The input/output possibilities for this RS flip-
flop are summarized in the truth table in Fig. 8.4. To aid in understanding the operation of this circuit, recall
that an A = 1 at any input of a NOR gate forces its output to an L =0,

1. The first input condition in the truth table is R = 0 and § = 0. Since a 0 at the input of a NOR gate has
no effect on its output, the flip-flop simply remains in its present state; that is, O remains unchanged.

2. The second input condition R = 0 and § = 1 forces the output of NOR gate B low. Both inputs to NOR
gate 4 are now low, and the NOR-gate output must be high. Thus a 1 at the S input is said to SET the
flip-flop, and it switches to the stable state where Q= 1.

Flip-Flops @

3. The third input condition is R = 1 and 5 = 0. This R S| @ Action
condition forces the output of NOR gate A low, and Last
since both inputs to NOR gate B are now low, the 0 0 gate No change
output must be high. Thus a 1 at the R input is said ¢ 1§ 1 |SET

to RESET the flip-flop, and it switches to the stable t ol o | RESET

state where 3 =0 (or @ =1). .
4. The last input condition in the table, R =1 and §= 1 1] ? | Forbidden

1, is forbidden, as it forces the outputs of both NOR (O} Tz 8.4) Truth table for a NOR-

gates to the low state. In. other word.s, bpth 0o=0 gate RS flip-flop

and ¢ = 0 at the same time! But this violates the

basic definition of a flip-flop that requires (to be the complement of 0, and so it is generally agreed

never to impose this input condition. Incidentally, if this condition is for some reason, imposed and the

next input is R = 0, $ = 0 then the resulting state { depends on propagation delays of two NOR gates.

If delay of gate A is less, i.e. it acts faster, then @ = 1 else it is 0. Such dependence makes the job of a

design engineer difficult, as any replacement of a NOR gate will make { unpredictable. That’s why R

=1, §=1 is forbidden and truth table entry is 7.

It is also important to remember that TTL gate inputs are quite noise-sensitive and therefore should
never be left unconnected (floating). Each input must be connected either to the output of a prior
circuit, or if unused, to GND or + V¢

Use the pinout diagram for a 54/7427 wriple 3-input NOR gate and show how to connect a
simple RS flip-flop. '

Solution One possible arrangement is shown in Fig. 8.5. Notice that pins 3 and 4 are tied together, as are pins 10
and 11; thus no input leads are left unconnected and the two gates simply function as 2-input gates. The third NOR
gate is not used. (It can be a spare or can be used elsewhere.)

54/7427

T
~_ .

e

IEIIQILTJ

11 R

1l

w'JL\ID’la

54/7427

@ Digital Principles and Applications

The standard logic symbols for an RS flip-flop are shown in Fig. 8.6 along with its truth table. The truth
table is necessary since it describes exactly how the flip-flop functions.

R S o
0 0 | Last state
—1s — ¢ —% ¢ 0 1
— — 1 0]0
R’ JTe R 9p 1 1| ?(Forbidden)
IEEE symbol Logic symbol
(b) Truth table
RS flip-flop

NAND-Gate Latch

A slightly different latch can be constructed by using NAND gates as shown in Fig. 8.7. The truth table for
this NAND-gate latch is different from that for the NOR-gate latch. We will call this latch an RS flip-flop.
To understand how this circuit functions, recall that @ low on any input to a NAND gate will force its output
high. Thus a low on the § input will set the latch (Q =1 and @ = 0). A low on the R input will reset it
(Q=10). Ifboth R and § are high, the flip-flop will remain in its previous state. Setting both R and S low
simultaneously is forbidden since this forces both Q and @ high.

5—ds — 0
R—dR p—0 R S 0
S v} IEEE symbol 1 1 | Laststate
5 o 1 01
¢ 110
0 0| ?(Forbidden)

{a) NAND gate latch (c) Truth table

Solution By placing an inverter at each input as shown in Fi ig. 8.8, the 2 inputs are now R and §, and the resulting
circuit behaves exactly as the RS flip-flop in Fig. 8.6. A single 54/7400 (quad 2-input NAND gate) is used.

Simple latches as discussed in this section can be constructed from NAND or NOR gates or obtained as medium-
scale integrated circuits (MSI). For instance, the 7418279 is a quad RS latch. The pinout and truth table for this
circuit are given in Fig. 8.9. Study the truth table carefully, and you will see that the latches bebave exactly like the
RS flip-flop discussed above. :

Flip-Flops

Ll 2] 3] [af [s] [ef [2] 18]

R 5 § 0 R F§
(a) Pinout 7482794

The NOR-gate flip-flop in Fig. 8.3 is seen to be
an active-high circuit because an // =1 at either the §
or R input is required to change the output (. On the
other hand, the NAND-gate flip-flop in Fig. 8.7 can
be considered an active-low circuit because an L =
at either input is required to change (. The NAND
gates in Fig. 8.7 can be changed to bubbled-input OR
gates as shown in Fig. 8.10. This circuit is equivalent
to the NAND-gate latch in Fig. 8.7 and functions in
exactly the same way. However, the bubbled inputs
more clearly express circuit operation.

Q0 GND

Quad SET-RESET latch

@

S

R

1. What do the tetters R and S stand for in the term “RS latch™?
2. A74LS279 is 2 quad latch. What does quad mean?

3. Why is the NAND-gate latch considered active-low?

0 R 8 o
0 0 | Laststate
— 5 O 0 1|1
_ 1 010
Q —R QOp— 1 1} ?(Forbidden)
(b} Logic symbol (c)
An RS flip-flop (latch)
5 R @
[u] [10] [9]
§ & RioQ
0 ¢ 0 } ?Forbidden
0 X 1 1
X 0 1 l
1 1 00
1 1 1 | ? Forbidden

X =Don’t care
{b) Truth table

iw]

R 5 flip-flop

Bubbled OR-gate equivalent of
Fig. 8.7

OEIRD

@ Digital Principtes and Applications
. 8.2 GATED FLIP-FLOPS .

Two different methods for constructing an RS flip-flop were discussed in Sec. 8.1. The NOR-gate realization
in Fig. 8.3b is an exact equivalent of the NAND-gate realization in Fig. 8.8a, and they both have the exact
same symbol and truth table as given in Fig. 8.6. Both of these RS flip-flops, or latches, are said to be
transparent; that is, any change in input information at R or § is transmitted immediately to the output at Q
and @ according to the truth table.

Clocked RS Flip-Flops

The addition of two AND gates at the R and § inputs as shown in Fig. 8.11 will result in a flip-flop that can be
enabled or disabled. When the ENABLE input is low, the AND gate outputs must both be low and changes in
neither & nor § will have any effect on the flip-flop output (. The latch is said to be disabled.

When the ENABLE input is high, information at the R and § inputs will be transmitted directly to the
outputs. The latch is said to be enabled. The output will change in response to input changes as long as the
ENABLE is high. When the ENABLE input goes low, the output will retain the information that was present
on the input when the high-to-low transition took place.

In this fashion, it is possible to strobe or clock the flip-flop in order to store information (set it or reset it) at
any time, and then hold the stored information for any desired period of time. This flip-flop is called a gated
or clocked RS flip-flop. The proper symbol and truth table are given in Fig. 8.11b. Notice that there are now
three inputs—R, §, and the ENABLE or CLOCK input, labeled EN. Notice also that the truth-table output is
not simply (, but 0,,1;. This is because we must consider two different instants in time: the time before the
ENABLE goes low (), and the time just after ENABLE goes low (0, . When EN =0, the flip-flop is disabled
and R and § have no effect; thus the truth table entry for R and 5 is X (don’t care).

Explain the meaning of O, the truth table in Fig. 8.11b.

EN § R Q.
§ —— L 1 0 0 | @,(nochange)
E $ 0 — € 1o 1]o0
ENABLE —EN 1 1 o0l1
R :)— R _Q}— —® ¢ 0 11| 2 (liegal)
¢ X X | @, (nochange)
(a) Logic diagram (b) LEEE symbel and truth table

Clocked RS flip-flop

Solution - For the flip-flop to operate properly, there must be a PT on the EN input. While EN is high, the information
on R and § causes the latch to set or reset. Then when EN transitions back to low, this information is retained in the
latch. When this N'T occurred, both R and § inputs were low (0), and thus there was no change of state. In other words,
the value of Q at time # + 1 is the same as it was at time ». Remember-thattiﬁaenocc‘ursjustbeforemeNTon EN,
and time » + 1, occurs just after the transition.
The logic diagrams shown in Fig. 8.12a and b 1llusnrame two dzﬂ‘emnt metlmds for realizing a clock RS ﬂ:p—ﬂop

Both realizations are widely used in medium- and large-scale integrated circuits, and you will find them easy to
recognize. You might like to examine the logic diagrams for a 5418109 or a 34L.874, for instance.

Flip-Flops @

T 0 . 0

(b)

Two different realizations for a clocked RS flip-flop

Figure 8.13 shows the input wavefonms R, S, and EN applied to a clocked RS flip-flop. Explain
the output waveform Q.

‘) b 3 4y 15 & b i
Time — T —
: i 1 1 :

EN(I) I[_| i‘]

Solution .. Between !2 and 13 bom R and S change states, but smce ¢ EN is low the ﬂlp—ﬁop is still disabled and @
remains at 1.

Between 13 and 5, the ﬂnp—ﬂop wﬁl mpond to any- change in R and § since EN is I:ugh Thus at 13 O goes low, and
at t4 it goes back high. No change occurs at: 15, At. !5 the value O =1 is latched and no cha.ngcs in @ occur between £
andhevmthonghbeﬂikand.gchmge :

Between t7, and g no change in @ occurs since both R and S are low. Initially, the ﬂ.lp-ﬂop is reset (O = 0). At time
11 EN goes high; the flip-flop is now enabled, and it is immediately set (O = 1) since R = 0 and S = 1. At time 7 EN
goes low and the flip-flop is disabled and latches in the stable state 0 = 1.

Clocked D Flip-Flops

The RS flip-flop has two data inputs, R and S. To store a high bit, you need a high S; to store a low bit, you need
a high R. Generation of two signals to drive a flip-flop is a disadvantage in many applications. Furthermore,
the forbidden condition of both R and § high may occur inadvertently. This has led to the D flip-flop, a circuit
that needs only a single data input,

Figure 8.14 shows a simple way to build a D (Data) flip-flop. This flip-flop is disabled when EN is low, but
is transparent when EN is high. The action of the circuit is straightforward, as follows. When EN is low, both
AND gates are disabled; therefore, D can change value without affecting the value of (. On the other hand,

@ Digital Principies and Applications

when EN is high, both AND gates are enabled. In this case, D 5 o

is forced to equal the value of D. When EN again goes low, O D_
retains or stores the last value of D, EN —‘E
e |)—ir 2

There are many ways to design D flip-flops. In general, a D
flip-flop is a bistable circuit whose D input is transferred to the
output when EN is high. Figure 8.15 shows the logic symbols
used for any type of D flip-flop.

In this section we're talking about the kind of D flip-flop in
which Q can follow the value of D while EN is high. In other words, if the data bit changes while EN is high,
the last value of D before EN return low is the value of D that is stored. This kind of D flip-flop is often called
a D latch,

Figure 8.15b shows the truth table for a D latch. While (EN) is low, D is a don’t care (X); will remain
latched in its last state. When EN is high, takes on the last value of D. If D is changing while EN is high,
it is the last value of D that is stored.

A D Flip-flop

—Jo }+—0¢o —p o— EN D’ Oyt
—EN] EN 0 X | @, (last state)
o O Ob— 1 0 0
IEEE symbol Logic symbol 11 I
{a} D flip-flop logic symbol (b) Truth table

(@) hg. 8.15) D Flip-flop logic symbol

The idea of data storage is illustrated in Fig. 8.16. D, D, D, Dy
Four D latches are driven by the same clock signal. | .
When the clock goes high, input data is loaded into the |)i
ftip-flops and appears at the output. Then when theclock |2 EN] [D EN| 1D EN| |D EN
goes low, the output retains the data. For instance, sup-
pose that the data input is

T T Clock

When the clock goes high, this word is leaded into
the D latches, resulting in an output of

(2 0,0,0,= 0111

After the clock goes low, the output data is retained,
or stored. As long as the clock is low, the D values can change without affecting the O values.

The 7475 in Fig. 8.17 is a TTL MSI circuit that contains four D latches; it’s called a quad bistable latch.
The 7475 is ideal for handling 4-bit nibbles of data. If more than one 7475 is used, words of any length can
be stored.

O3 o, g Q

Storing a 4-bit word

(SASELE-TEST)

4. What does an entry X mean in a flip-flop truth table?
5. What could you do to disable the flip-flop in Fig. 8.117?
6. Which flip-flop is easier to use, the RS of the D, as a clocked or gated latch to store data?

Flip-Flops @
-~
|7 |6 3 2
D D D D,
5 3 2 1 {JEN | 4

V...
e 7475
3 GND . _ _EN2'13—
1 0, 0: 0, & 0 0 & §
T 17T 17T 1T 17T 1T 1
9 8§ 10 Il 15 14 16 1
(a)
EN D
0— — 0

<

(b)
4-bit bistable latch: (a) Pinout, (b) Logic diagram (each latch)

. 8.3 EDGE-TRIGGERED RS FLIP-FLOPS '

The simple latch-type flip-flops presented in Sec. 8.1 are completely transparent; that is, the output O
immediately follows any change of state at the input (R, S, or D). The gated or clocked RS and D flip-flops in
Sec. 8.2 might be considered semitransparent. That is, the output Q will change state immediately provided
that the EN input is high. If any of these flip-flops are used in a synchronous system, care must be taken to
ensure that all flip-flop inputs change state in synchronism with the clock. One way of resolving the problem
for gated flip-flops is to allow changes in R, S, and D input levels only when EN is low (or require fixed levels
at R, §, and D any time EN is high). At the very least, these are highly inconvenient restrictions, and at the
worst they may in fact be impossible to realize. From the previous chapter, we know that virtuaily all digital
systems operate in a synchronous mode. Thus the edge-triggered flip-flop was developed to overcome these
rather severe restrictions.

Positive-Edge-Triggered RS Flip-Flops

In Fig. 8.18a, the clock (C) is applied to a positive pulse-forming circuit (discussed in Sec. 7.1). The PTs
developed are then applied to a gated RS flip-flop. The result is a positive-edge-triggered RS flip-flop, with the
IEEE symbol given in Fig. 8.18b. The small triangle inside the symbol (dynamic input indicator) indicates
that { can change state only with PTs of the clock (C). Each PT of the clock in Fig. 8.18¢c produces a very
narrow PT that is applied to the AND gates. The AND gates are active only while the PT is high (perhaps
25 ns), and thus O can change state only during this short time period. In this manner) changes state in
synchronism with the PTs of the clock.

@ Digita! Principles and Applications

S_,__:
C——E HPT T :>Sc _Q
X HRO- —r p—0

(a) Logic diagram {b) IEEE symbol
c LML
] 1 1 1 1
] [}] 1 1
SR R I I
C S ROy | Action b n B n
L]]]
+ & 0| @, |Nochange s m ! I.'
p 0 1) 0 RESET 1R
b0 1 SET R P]’ :|
P11 ? Illegal Q
(c) Truth table (d) Positive-cdge-triggered RS flip-flop

Positive-edge-triggered RS flip-flop

This flip-flop is easy to use in any synchronous system! Another way of expressing its behavior is to say
the flip-flop is transparent only during PTs; it is not transparent for the remainder of the time. In other words,
S and R inputs affect Q only while the positive pulse is high, and they need to be static only during this very
short time.

The truth table for the edge-triggered RS flip-flop is given in Fig. 8.18c. The small vertical arrows under
C (clock) mean that changes of statc (Q) occur according to the R and § levels, but only during PTs of the

clock. Look at the waveforms in Fig. 8.18d. Note that when ¢ changes state, it does so in exact synchronism
with PTs of the clock C.

Use the positive-edge-triggered RS flip-flop truth table to explain ¢ changes of state with time
in Fig. 8.18d.

Solution Here’s what happens at each point in time:
Time 2p: $=0, R ==-0, no change in O(Q remains 0)
Time #;: §=1, R =0, Q changes from 0 to 1
Timer: S=0,R=1, Qresetsto 0
Time t3: S=1, R =0, P sets to 1
Time #4: § =0, R =0, no change in O(Q remains 1)

Notice that either R or S, or both, are allowed to change state at any time, whether C'is high or low. The only time
both R and § must be stable (unchanging) is during the short PTs of the clock. ' '

Negative-Edge-Triggered RS Flip-Flops

The symbol in Fig. 8.19a is for a negative-edge-triggered RS flip-flop. The truth table in Fig. 8.19b shows that
(J changes state according to the R and § inputs, but only during NTs of the clock. On the IEEE symbol, the
small bubble on the clock input (C) means active-low. This bubble, along with the dynamic input indicator,

Flip-Flops @

C S R|Gy) | Action
-8 Q + 0 0| Q, |Nochange
—aC vy 01 0 RESET
_ v 1001 SET
—R ¢ L1 0 Tllegal
(a) IEEE symbol (b} Truth table

means negative-edge triggering. This flip-flop behaves exactly like the positive-edge-triggered RS flip-flop,
except that changes in output Q are synchronized with NTs of the clock (C).

Use the negative-edge-triggered RS flip-flop truth table to explain O changes of state with
time in Fig. 8.20.

Solution Here's what happens at cach point in time: c m

Time _t4:' §=10, R = 0, no change in Q({ remains 1) '

Notice that either R or S, Dl.‘. both, are allowed to change state at 0
any time, whether C is high or low. The only time both R and § must
be stable {unchanging) is during the short NTs of the clock.

Time #: $=0,R=0, ni),gi_n_mg_e in (2 remains 0) PT ; i i : : '
Time #;: § =1, R = 6, Q.changes from0to 1. t‘ J tl 3 J I
Time f: =9, R =1, @ resets to 0 L o—b 7 ﬁ *
Timety: S=1,R=0,Qsetstol : S I__il i

|

L

7. What does it mean to _séxy thata 'ﬂip-ﬁo,p is transparent?
8. What is positive-edge triggering?
9. How does arl RS latch differ from an edge-triggered RS flip-flop?

. 8.4 EDGE-TRIGGERED D FLIP-FLOPS '

Although the D latch is used for temporary storage in electronic instruments, an even more popular kind of
D flip-flop is used in digital computers and systems. This kind of fiip-fiop samples the data bit at a unique
point in time,

Figure 8.21 shows a positive pulse-forming circuit at the input of a D latch. The narrow positive pulse
(PT) enables the AND gates for an instant. The effect is to activate the AND gates during the PT of C, which
is equivalent to sampling the value of I for an instant. At this unique point in time, D and its complement
hit the flip-flop inputs, forcing Q to set or reset (unless Q already equals D). Again, this operation is called
edge triggering because the flip-flop responds only when the clock is in transition between its two voltage
states. The triggering in Fig. 8.21 occurs on the positive-going edge of the clock; this is why it’s referred to
as positive-edge triggering.

@ Digttal Principles and Applications

D o
s o
c PT C D| O,
0 X | Q, (last state)
HR 00— b0 0
41 1
(a) Circuit diagram (c) Truth table

Positive-edge-triggered D flip-flop

The truth table in Fig. 8.21b summarizes the action ofa positive-edge-triggered D flip-flop. When the clock
is low, D is a don’t care and Q is latched in its last state. On the leading edge of the clock (PT), designated by
the up arrow, the data bit is loaded into the flip-flop and @ takes on the value of D.

When power is first applied, flip-flops come up in random states. To get some computers started, an
operator has to push a RESET button. This sends a CLEAR or RESET signal to all flip-flops. Also, it’s
necessary in some digital systems to preset (synonymous with set) certain flip-flops.

Figure 8.22 shows how to include both functions in a D flip-flop. The edge triggering is the same as
previously described. Depressing the RESET button will set ¢ to 1 with the first PT of the clock. Q will
remain high as long as the button is held closed: The first PT of the clock after releasing the button will set
¢ according to the D input. Furthermore, the OR gates allow us to slip in a high PRESET or a high CLEAR
when desired. A high PRESET forces O to equal 1; a high CLEAR resets Q1o 0.

ee

RESET v—f— PRESET

b D s o
c

CLEAR
PRESET and CLEAR functions

The PRESET and CLEAR are called asynchronous inputs because they activate the flip-flop independently
of the clock. On the other hand, the D input is a synchronous input because it has an effect only with PTs of
the clock.

Figure 8.23a is the IEEE symbol for a positive-edge-triggered D flip-flop. The clock input has a small
triangle to serve as a reminder of edge triggering. When you see this symbol, remember what it means; the D
input is sampled and stored on PTs of the clock.

Sometimes, triggering on NTs of the clock is better suited to the application. In this case, an internal
inverter can complement the clock pulse before it reaches the AND gates. Figure 8.23b is the symbol for a
negative-edge-triggered D flip-flop. The bubble and triangle symbolize the negative-edge triggering.

Flip-Flops @

Figure 8.23c is another commercially available D fiip-flop (the 54/74175 or 54/74L.8175). Besides having
positive-edge triggering, it has an inverted CLEAR input This means that a low CLR resets it. The 54/74175
has four of these D flip-flops in a single 16-pin dual in-line package (DIP), and it’s referred to as a quad D-

type flip-flop with clear.

—{D 0 —{D L?) D 0
—p B —=a> _ P C .
o @ CLR 0

() (b) (c)

Dflip-flopsymbeols: (a) Positive-edge-triggered, (b) Negative-edge-triggered,
{c) Positive-edge-triggered with active low clear

10. The C input to the D flip-fiop in Fig. 8.21 is héid low, What effect does the D input have?
11, To preset the flip-flop in Fig. 8.22, what level is required at the preset input. What is the
' resulting state of 07 o ‘ ' "

8.5 EDGE-TRIGGERED JK FLIP-FLOPS

Setting R = § = 1 with an edge-triggered RS flip-flop forces both 2 and Q to the same logic level. This is an
illegal condition, and it is not possible to predict the final state of Q. The JK flip-flop accounts for this illegal
input, and is therefore a more versatile circuit. Among other things, flip-flops can be used to build counters.
Counters can be used to count the number of PTs or NTs of a clock. For purposes of counting, the JK flip-flop
is the ideal element to use. There are many commercially available edge-triggered JK flip-flops. Let’s see
how they function.

Positive-Edge-Triggered JK Flip-Flops

In Fig. 8.24, the puise-forming box changes the clock into a series of positive pulses, and thus this circuit
will be sensitive to PTs of the clock. The basic circuit is identical to the previous positive-edge-triggered RS
flip-flop, with two important additions:
1. The (output is connected back to the input of the lower AND gate.
2. The Q output is connected back to the input of the upper AND gate.
This cross-coupling from outputs to inputs changes the RS flip-flop into a JK flip-flop. The previous §
input is now labeled J, and the previous R input is labeled X. Here’s how it works:
1. When.Jand K are both low, both AND gates are disabled. Therefore, clock pulses have no effect. This
first possibility is the initial entry in the truth table. As shown, whenJ and X are both 0s, O retains its
last value.

2. When Jis low and X is high, the upper gate is disabled, so there’s no way to set the flip-flop. The only
possibility is reset. When Q is high, the lower gate passes a RESET pulse as soon as the next positive

@ Digital Principles and Applications

; L ‘/\ s 0 C J K| @uv1 | Action
PT t 0 0/ @,(last state) | No change
¢ ‘D—_E‘ + 0 1|0 RESET
K ‘) R O 41 01 SET
4 1 1] 0, (toggle) Toggle
(a) One way to implement a J& flip-flop (b) Truth table

A positive-edge-triggered JK flip-flop

clock edge arrives. This forces Q to become low (the second entry in the truth table). Therefore, J= 0
and K = 1 means that the next PT of the clock resets the flip-flop (unless () is already reset).

3. When Jis high and K is low, the lower gate is disabled, so it’s impossible to reset the flip-flop. But you
can set the flip flop as follows. When Q is low, Q is high; therefore, the upper gate passes a SET pulse
on the next positive clock edge. This drives Q into the high state (the third entry in the truth table). As
you can see, /= I and K = 0 means that the next PT of the clock sets the flip-flop (unless Q is already
high).

4. When Jand X are both high (notice that this is the forbidden state with an RS flip-fiop), it’s possible
to set or reset the flip-flop. If 0 is high, the lower gate passes a RESET pulse on the next PT. On the
other hand, when is low, the upper gate passes a SET pulse on the next PT. Either way, O changes
to the complement of the last state (see the truth table). Therefore, /= 1 and K = 1 mean the flip-flop
will toggle (switch to the opposite state) on the next positive clock edge.

Propagation delay prevents the JK flip-flop from racing (toggling more than once during a positive clock
edge). Here’s why. In Fig. 8.24, the outputs change after the PT of the clock. By then, the new Q and Q
values are too late to coincide with the PTs driving the AND gates. For instance, if t, = 20 ns, the outputs
change approximately 20 ns after the leading edge of the clock. If the PTs are narrower than 20 ns, the
returning O and Q arrive too late to cause false triggering.

Figure 8.25a shows a symbol for a JK flip-flop of any design. When you see this on a schematic diagram,
remember that on the next PT of the clock:

1. Jand K low: no change of Q.

2. Jlow and K high: (7 is reset low.

3. Jhigh and X low: is set high.

4. Jand K both high: 0 toggles to opposite state.

You can include OR gates in the design to accommodate PRESET and CLEAR as was done earlier. Figure
8.25b gives the symbol for a JK flip-flop with PR and CLR. Notice that it is negative-edge-triggered and
requires a low PR to set it or a low CLR to reset it.

\

PR
— o —u o /e
—> C —aop> C
—X Q “1Ker P9 Kyr P9
() Basic symbol (b) 7ALST6A (¢) TALST3A

JK flip-flop symbols

Flip-Flops @

Figure 8.25¢ is another commercially available JK flip-flop. It is negative-cdge-triggered and requires a low
CLR to reset it. The output Q reacts immediately to a PR or CLR signal. Both PR and CLR are asynchrenous,
and they override all other input signals,

Toggle flip-flop, popularly known as T flip-flop has following input-cutput relation. When
input T = 0, the output (2 does not change its state. For I'= 1, the output { toggles its value.

Derive T flip-flop from JK flip-flop.

Solution From Fig. 8.24b we find for input J = K = 0, the output (J,+ | = Oy, i.¢. output does not change its state.
And for J= K =1, the output Qp+; = Oy, i.. output toggles. Thus, if we tie J and X inputs of JX flip-flop together and
make a common input 7'=.J = K, the resulting circuit will behave as T flip-flop.

(ISELE-TEST)
12. What is the primary difference between a JK and anRS flip-flop?
13. How could you change an edge-triggered RS flip-flop into an edge-triggered JK flip-flop?

. 8.6 FLIP-FLOP TIMING .

Diodes and transistors-cannot switch states immediately. It always takes a small amount of time to turn a
diode on or off. Likewise, it takes time for a transistor to switch from saturation to cutoff, and vice versa. For
bipolar diodes and transistors, the switching time is in the nanosecond region.

Switching time is the main cause of propagation delay, designated #,. This represents the amount of time
it takes for the output of a gate or flip-flop to change states after the input changes. For instance, if the data
sheet of an edge-triggered D flip-flop lists #, = 10 ns, it takes about 10 ns for Q to change states after D has
been sampled by the clock edge. This propagation delay time has been used to construct the “pulse-forming
circuit” used with edge-triggered flip-fiops. When flip-flops are used to construct counters, the propagation
delay is often small encugh to be ignored.

Stray capacitance at the D input (plus other factors) makes it necessary for data bit D to be at the input
before the clock edge arrives. The setup time fyeq,p, is the minimum amount of time that the data bit must be
present before the clock edge hits. For instance, if a D flip-flop has a setup time of 15 ns, the data bit to be
stored must be at the D input at least 15 ns before the clock edge arrives; otherwise, the manufacturer does
not guarantee correct sampling and storing.

Furthermore, data bit 2 has to be held long enough for the internal transistors to switch states. Only after
the transition is assured can we allow data bit D to change. Hold time #y,,14 is the minimum amount of time
that data bit D must be present after the PT of the clock. For example, if fienp = 15 ns and g4 = 5 ns, the
data bit has to be at the D input at least 15 ns before the clock edge arrives and held at least 5 ns after the
clock PT.

Typical waveforms for setting a 1 in a positive-edge-triggered flip-flop are shown in Fig. 8.26.
Discuss the timing.

Solution The lower line in-Fig.-8.26 is the time litie with critical times marked on it, Prior to #;, the datacanbe a 1
or a 0, or cah be changing. This is shown by drawing lines for both high and low levels on D. From time t;to £y, the

@ Digital Principles and Applications

Letup) Thold
| - SR

+]
i)
i I
1 I
CLK H '
T 7
1 1 1
+ i []
1 H ' ;
Q i ! 5
0 1 b :
[EUN——— ENSIUNS R—
1 1 t 1 1
T : :._.4" H i
ime i (1l L
h Ly Y,

(P Fig. 8.26
data line D must be held steady (in this case a 1). This i the setup time fgetup. Data is shified into the flip-flop at time
#,'but does not appear at O until time £3. The time from #; to #3 is the propagation tirne Ip. In order to guarantee proper
operation, the data line must be held steady from time 7, until £y; this is the hold time 701 After £, D is free to change
states—shown by the double lines. . choniaEel S

8.7 EDGE TRIGGERING THROUGH INPUT LOCK OUT

We have seen how edge triggering of flip-flops can be achieved by pulse forming circuit (Section 7.1). This
requires application of a very narrow pulse which is generated using differential propagation delays of two
signal flow paths while the flip-flops themselves are level triggered. An alternate way of achieving edge
triggering is to implement a kind of lock out of the input so that it is not able to enforce a change at output
which itself is level triggered. This is to say that the effect of change in input is allowed only at the edge and
not after the edge. Let us see how this is possible by implementing a positive edge triggered D type flip-flop.
This requires three NAND latches as shown in Fig. 8.27 with one NAND gate (number 3) having three inputs
and the rest are all two input NAND gates. Note that for a NAND gate output to be 0, all the inputs must be
at 1, else the output is 1. The output latch behaves like an SR flip flop where no change in output occurs if §
=1,R=1.

Now, if the clock input is held at 0 then irrespective of what is present at D input, the NAND logic makes
both §= 1, R =1 and thus there could be no change in the output. If Clock = 1 then SR can always change if
other inputs of NAND gates 2 and 3 change and thus the output is essentially level triggered. We will now
explain how input lock out makes the circuit as a whole a positive edge triggered circuit,

Consider the case when Clock = 0 and D = 0 (Fig. 8.27a). Since, for a NAND gate, 0 is the forcing input,
the intermediate outputs are §=1, R =1 and 4 = 1 which make £ = 0. Now, clock makes a transition from 0
— 1. D =0forces A = 1 and B = 0 keeps R = 1. Thus, after this transition, 5=0, R=1,4 =1 and B = 0. This
makes {) = 0 irrespective of the previous state and one can see that the value at D, i.e. 0 is transferred to Q
after the clock trigger. Next, we see if at Clock = 1, D is changed, then whether Q is changed. This is shown
in Fig. 8.27b as a follow-up of Fig. 8.27a. Before) makes a transition Clock = 1, D = 0 and intermediate
outputs S=0,R=1,4=1, B=0and 0 = 0. When D goes to 1, 4" NAND gate is only directly affected as D
is not connected elsewhere. However, the output 4 of this gate does not change as it is kept held at 1 by the

Fiip-Flops

@

other input coming from §=0. Thus, S=0,R=1,4 =1, 8= 0and O = 0. This is the lock out of input we
were referring to. Note that clock going from | to 0 does not change (as that transition makes §=1, R= 1.

Next, consider the case when Clock = 0 and D = 1. This is shown in Fig. 8.27c. S=1,D=1make 4 = 0
which in turn makes B = 1. Now, clock makes a transition from 0 — 1. 4 = 0 maintains S = 1. Both the inputs
of 2" NAND gate being 1, R =0. §= 1, R = 0 make Q = 1 irrespective of previous state and thus after positive
clock trigger, the logic value of D arrives at Q for D = 1 case, too. With Clock = 1, if input D changes from
1 to 0, wilt the output Q change? This 4" possibility is shown in Fig. 8.27d. D=0 makes 4 = 1 but R =10
maintains B = 1 and § = 1. Thus, afier the transition, SR remains at where it was and input D remaines locked

out, i.e. unable to effect any change in the output at Clock = 1.

00

1 =1

Clock

1—0

0—-0

5 o
00

6 [
1—=1

(b)

5 ¢
-1

6 0
0-0

(]

Positive edge triggering of D type flip-flop through input lock out

{ 88) Digital Principles and Applications

8.8 JK MASTER-SLAVE FLIP-FLOPS

Figure 8.28 shows one way to build a JK master-slave flip-flop. Here's how it works.

1. To begin with, the master is positive-level-triggered
and the slave is negative-level-triggered. Therefore, the
master responds to its . and X inputs before the slave. _
HJ=1 and K =0, the master sets on the positive clock —K @ K
transition. The high output of the master drives the J
input of the slave, so on the negative clock transition,
the slave sets, copying the action of the master.

2. If J=0and K = 1, the master resets on the PT of the
clock. The high Q output of the master goes to the K input of the slave. Therefore, the NT of the clock
forces the slave to reset. Again, the slave has copied the master.

3. Ifthe master’s ./ and X inputs are both high, it toggles on the PT of the clock and the slave then toggles
on the clock NT. Regardless of what the master does, therefore, the slave copies it: if the master sets,
the slave sets; if the master resets, the slave resets.

4. It /=K =0, the flip-flop is disabled and () remains unchanged,

The symbol for a 7476 master-slave flip-flop is PR
shown in Fig. 8.29. Either it can be preset to 0 = H

—J 0 J o

Nlbl

by taking PR low, or it can be reset to 0 = I by taking J ko
CLR low. These two inputs take precedence over all C J K | Q. | Action
other signals! C IL L L} Q, | Nochange

There is something different however. First of all, K p—0 ILL H| L RESET
notice that the clock (C) is not edge-triggered. The 5 fLH L\ H SET
master does in fact change state when ¢ goes high. ILH H| Q, Toggle
However, while the clock is high, any change in J or CLR

(a) Symbol (b) Truth table

K will immediately affect the master flip-flop. In other
words, the master is transparent while the clock is .
high, and thus J and K must be static during this time. =
The truth table in Fig. 8.29b reveals this action by means of the pulse symbol ().

Second, the symbol 1 appearing next to the Q and the ¢ outputs is the IEEE designation for a postponed
output. In this case, it means does not change state until the clock makes an NT. In other words, the
contents of the master are shifting into the slave on the clock NT, and at this time O changes state,

7476 JK master flip-flop.

To summarize: The master is set according to J and X while the clock is high; the contents of the master
are then shifted into the slave (Q changes state) when the clock goes low. This particular flip-flop might be
referred to as pulse-triggered, to distinguish it from the edge-triggered flip-flops previously discussed.

There are numerous pulse-triggered master-slave flip-flops in use today. However, because edge-triggered
flip-flops have overcome the restriction of holding ./ and K static when the clock is high, most new designs
incorporate edge-triggered devices. Some of the more popular pulse-triggered flip-flops you might encounter
include the 7473, 7476, and 7478. Their more modern, edge-triggered counterparts include the 74LS73A., the
T4LST6A, and the 74LS78A.

The JK master-slave flip-flop in Fig. 8.29 has its ./ and K inputs tied to + Vce and a series
of pulses (actually a square wave) are applied (o its C input. Describe the waveform at (.

Flip-Flops @
Solution - Since J= K = 1, the flip-flop simply toggles each time the clock -
goes low. The wave-form at 'has a-period twice that of the C waveform. In ¢ —H—I_L—r[-—ﬂ—
other words, the frequency of £ is only one-half that of C. This circuit acts _—J-—-——L_J——I_
as a frequency divider——the output frequency is equal to the input frequency - ¢ .
divided by 2. Note that { changes state on NTs of the clock. The waveforms
are given in Fig. 8.30.

SISELF-TEST)
14, Whatis' the main difference between an cdgc-tnggered and a pulse—tnggered JK flip-flop?
15. Explain the operatlon of the master-slave flip-flop in Fig. 8.29.

. 8.9 SWITCH CONTACT BOUNCE CIRCUITS '

In nearly every digital system there will be occasion to use mechanical contacts for the purpose of conveying
an electrical signal; examples of this are the switches used on the keyboard of a computer system. In each
case, the intent is to apply a high logic level (usually +5 Vdc) or a low logic level (0 Vdc). The single-pole—
single-throw (SPST) switch shown in Fig. 8.3 1a is one such example. When the switch is open, the voltage at
point 4 is +5 Vdc; when the switch is closed, the voltage at paint 4 is (0 Vde. Ideally, the voltage waveform at
A should appear as shown in Fig. 8.31b as the switch is moved from open to closed, or vice versa.

In actuality, the waveform at point A will appear more or less as shown in Fig, 8.31¢, as the result of a
phenomenon known as contact bounce. Any mechanical swilching device consists of a moving contact arm
restrained by some sort of a spring system. As a result, when the arm is moved from one stable position to
the other, the arm bounces, much as a hard ball bounces when dropped on a hard surface. The number of
bounces that occur and the period of the bounce differ for each switching device. Notice carefully that in
this particular instance, even though actual physical contact bounce occurs each time the switch is opened or
closed, contact bounce appears in the voltage level at point 4 only when the switch is closed.

Open

Switch position P i
, +5V
Voltage at 4 ,
0 —A B

R
(b) Idecal voitage at 4
O
Switch position pett
SPST e
switch Closed — = —+| b Bounce
SV H H H H eriod
Voltage at A p
= }_____

-

Bounce

(a)

@ Digital Principles and Applications

If the voltage at point 4 is applied to the input of a TTL circuit, the circuit will respond properly when
the switch is opened, since no contact bounce occurs. However, when the switch is closed, the circuit will
respond as if multiple signals were applied, rather than the single-switch closure intended—the undesired
result of mechanical contact bounce. There is a need here for some sort of electronic circuit to eliminate the
contact bounce problem.

A Simple RS Latch Debounce Circuit

The RS tatch in Fig. 8.32 will remove any contact bounce due Ve
to the switch. The output (Q) is used to generate the desired
switch signal.

When the switch is moved to position ¥, R=0and §=1.
Bouncing occurs at the S input due to the switch. The flip-flop
“sees” this as a series of high and low inputs, settling with a R
high level. The flip-flop will immediately be set with O = 1 2=
at the first high level on S. When the switch bounces, losing (a) Switch contact bounce eliminator
contact, the input signals are R = § = 0, therefore the flip-flop

remains set ({0 = 1). When the switch regains contact, R = 0 Switch H_,*|__
and § = 1; this causes an attempt to again set the flip-flop. But position /
I fswiter L

since the flip-flop is already set, no changes occur at Q. The $
. . R5 b
result is that the flip-flop responds to the first, and only to the I ounce]]

first, high level at its § input, resulting in a “clean” low-to-high QJ—|“
signal at its output (0).

When the switch is moved to position L, S=0 and R = 1.
Bouncing occurs at the R input due to the switch. Again, the
flip-flop “sees” this as a series of high and low inputs. It simply
responds to the first high level, and ignores all following transitions. The result is a “clean” high-to-low signal
at the flip-flop output. The waveforms in Fig. 8.32b illustrate the behavior.

(b) Switch bounce

Debounce circuit

16. What is switch contact bounce?
7. Why 1s switch contact bounce important to account for in a digital system?

- 8.10 VARIQUS REPRESENTATIONS OF FLIP-FLOPS '

There are various ways a flip-flop can be represented, each one suitable for certain application. Considering
basic flip-flop truth table as starting point, this section derives these representations.

Characteristic Equations of Flip-flops

The characteristic equations of flip-flops are useful in analyzing circuits made of them. Here, next output
On+1 1s expressed as a function of present output 0, and input to flip-flops. Kamaugh Map can be used to get
the optimized expression and truth table of each flip-flop is mapped into it. This is shown in Fig. 8.33 for all
types of flip-flops. The logic equations are presented in SOP form by forming largest group of 1°s for each

Flip-Fiops @

SR D JK T
ON 00 01 11 10 ON_0 1 QN 00 01 11 10 N 0 |1
ol o | o ||x 1 o| © |T| ol 0 | o |1 1] o| o
| o e [] e 1] 7] o | o |[1 0
@0, =S+RQ, ®) Q=D © Q41 =/ 0, +KQ, @ Q4 =TQ,*T0,

Characteristic equations of (a) SR flip-flop, (b) D flip-flop, (c) JK flip-
flop, (d) T flip-flop

flip-flop. For SR flip-flop, since S = R = 1 input is not allowed we have don’t care states in corresponding
locations in Kamaugh Map. This means, it does not matter if Q4| is 0 or 1 if SR = 11 as such a combination
at input side will never arise.

The equation for SR flip-flop and all others thus can be represented in a summarized form as

SR fiip-flop: 0,1 =S+ RO,
JK flip-flop: 0,1 =J0Q,+K'Q,
D flip-flop: Qv =D

T flip-flop: Cpt1 =70+ T'O,

Flip-Flops as Finite State Machine

In a sequentia! logic circuit the value of all the memory elements at a given time define the state of that circuit
at that time. Finite State Machine (FSM) concept offers a better alternative to truth table in understanding
progress of sequential logic with time. For a complex circuit a truth table is difficult to read as its size
becomes too large. In FSM, functional behavior of the circuit is explained using finite number of states. State
transition diagram is a very convenient tool to describe an FSM. In Fig, 8.34 all the flip-flops are represented
as finite state machine through their state transition diagrams.

i0 1
SR
HCONB OISO O]
01 10 0
0

01
(a) SR flip-flop (b} D flip-flop
10
11 . 1
JK
Jeomsod IN{CONmOD!
01 [0 0
01 1
11
(c) JX flip-flop {d) T flip-flop

State transition diagram of (a) SR flip-flop, (b) D flip-flop, (c) JK flip-
flop, (d) T flip-flop

@ Digital Principles and Applications

Let us see how state transition diagram for SR flip-flop is developed from its truth table or characteristic
equation. Each flip-flop can be at either of 0 or 1 state defined by its stored value at any given time. Application
of input may change the stored value, i.e. state of the flip-flop. This is shown by directional arrow and the
corresponding input is written alongside. If SR flip-flop stores 0, then for SR = 00 or 01 the stored value does
not change. For SR = 10, flip-flop output changes to 1. Note that, SR = 11 is not allowed in SR flip-flop. When
3SR flip-flop stores 1, application of SR = 00 or 10 does not change its value and only when SR = 01, output
changes to 0. State transitions on application of all possible combination of inputs at every state are shown in
Fig. 8.34(a) for SR flip-flop. The state transition diagrams are developed in a similar way for D, JK, T flip-
flops and are shown in Figs. 8.34 (b), (c), (d) respectively. We see, the timing relation implicit in flip-flop truth
tables are brought to the forefront by FSM concept and state transition diagram.

Flip-Flop Excitation Table

In synthesis or design problem excitation tables are very useful and its importance is analogous to that of truth
table in analysis problem. Excitation table of a flip-flop is looking at its truth table in a reverse way. Here,
flip-flop input is presented as a dependent function of transition ,— 0,41 and comes later in the table. This
is derived from flip-flop truth table or characteristic

equation but more directly from its state transition 28| S R|J K|D|T
diagram. Figure 8.35 gives a summary presentation 0 -0 0 x |0 x|0]0
of excitation tables of all the flip-flops. ? (1) (1) ?)1()1‘ (l) }

From Fig. 8.34(a), one can see if present state 1 1 x 0 |x 0110

is 0 application of SR = 0x does not alter its value
where ‘X’ denotes don’t care condition in R input.
State 0 to 1 transition occurs when SR = 10 is pres-
ent at the input side while state 1 to 0 transition occurs if SR = 01. Present state 1 is maintained if SR = 0,
i.e. SR=00 or SR =01. This is shown in Fig. 8.35 along SR column. Excitation table for other flip-flops are
obtained in a similar way. :

Excitation table of flip-flops

Note that, JK flip-flop has maximum number of don’t care “x’ conditions and D flip-flop input simply
follows the value to which transition is made.

18. What is characteristic equation of a flip-flop?
19. What is a Finite State Machine? _
20. How is excitation table different from flip-flop truth tabie?

'xa_ D . Afictitious flip-flop with two inputs 4 and B functions like this. For 48 =00 and 11 the output
becomes 0 and 1 respectively. For AB = 01, flip-flop retains previous output while output
complements for 48 = 10. Draw the truth table and excitation table of this flip-flop.

Solution The truth table and corresponding excitation tables are presented in Figs. 8.36(a) and (b) respectively.
For 0~ 0 transition we see 48 need to be 00 or 01. Hence, we write 48 = 0x in that place and similarly for other
transitions. :

Flip-Flops @

A B} Qw1 g, Q0,11 4 B

0 0 0 00 [0 X

o 1 O, 01 1 x

1 o] @ 10 | x 0

1o o0 | s | x
(a) {b)

Solution for example 8.10: (a) Truth table, (b) Excitation table

8.11 ANALYSIS OF SEQUENTIAL CIRCUITS

A sequential logic circuit contains flip-flops as memory elements and may also contain logic gates as
combinatorial circuit elements. Analysis of a circuit helps to explain its performance. We may use truth tables
of each building block or corresponding equations for this purpose. In this section, we look at important
issues in an analysis problem through an example. In subsequent chapters, more analysis examples will be
taken up.

({ : jExample 8.11) Consider, the sequential circuit shown in Fig. 8.37. It has only input CLK in the form of fixed
frequency binary pulses that triggers both the flip-flops. An output X is generated from flip-
flop outputs as shown. Analysis of this circuit will give how flip-flop values {or states) and
meore importantly cutput X change with input CLK. The steps ar¢ as follows.

L

D

A sequential logic circuit for analysis purpose

Note from the circuit diagram flip-flop input relations: S4 = 4, Rq = 4, and Sp= AnBy, Rg = AnBp.
Next, using characteristic equation of SR flip-flop (Section 8.9) we can write,
for flip-flop 4
Aps1 =Sqt Ridy
= A + A} A, (Substituting 54 = A, and R4 = Ap)
=4,
and for fiip-flop B
By =8p+ REB,
= A,B, + (A,By) By, (Substituting Sg = AnB, and Rp = A,B,,)
= A,B, + (A, + B;)) B, (Following De Morgan’s Theorem)

@ Digital Principles and Applications

=AuBy + 4, B,
=4,® B,
Now the output from the given circuit, X, = 4,8,

The equation shows that present (given by time index n) values of 4 and B flip-flop, also
called states of the sequential circuit determine present output and next (given by time index
n + 1) flip-flop values or state of the circuit. Thus, if present state is B, = 0, 4, = 0 then present output X,
=A4,B,=0.0 = 0 and at the end of first clock cycle we getnext state is B, | =0@0=0,4,,,=0=].In
next clock cycle present state is nothing but next state of previous cycle or B, = 0, 4, = 1. The output now
is generated as X, = 0.1 = 0 and next state is determined as B,e1=0@1=1,4,4y =1"=0. Continuing this
exercise we arrive at state analysis table also called state table as shown in Table 8.1,

State Analysis Table for Analysis Example

Present Present Input Next State Present
State Output
B, 4, Sp=4,8, Rp=4,B, S4=A, Rp=Ay Buy+1=4,88, An+y = A7 X =A,By,
0 0 0 0 I 0 0 1 0
0 1 1 0 0 1 1 0 0
1 0 0 0 1 0 1 1 0
11 0 I 0 1 0 0 !
0 0 0 0 1 0 0 ! 0
0 1 Repeats
We find that the states as well as output of the above
circuit repeat after every four clocking periods and at @ @

every fourth clock period the output remains | for one

clock period. The circuit thus behaves like a counter that

counts number of clock pulses that has arrived at its in-

put and signals when there is a count of four. A pictorial

presentation of the performance of the circuit showing @ @

state transitions with each clock is shown in Fig. 8.38.

Tl}e values within the circle follow sy.ntax: B A X, State transition diagram
Flip-flop outputs defining current state is shown to tklle of the sequential circuit
Ieft of */” and current output appears at right, Such cir- given in Fig. 8.37

cuit where output is directly derived from current state

only and not from current inputs are called Moore circuit. If current inputs are also used in output forming
logic it is called Mealy circuit. More about these are discussed in Chapter 11. Often, a state transition diagram
of a sequential circuit serves better than the word description and is presented as final output of an analysis
exercise,

Analysis of a sequential circuit can also be done through timing diagram where all the input, output and
if necessary intermediate variables are plotted against some reference signal say, clock input. The timing
diagram obtained by analyzing circuit of Fig. 8.37 is shown in Fig. 8.39. The method followed is given
next.

Flip-Flops @

=
o
Il
b,
o
I

i
||
171

]

] 1 [}
1
I
I
'

We start with an initial state B = 0, 4 = ¢ and note that this state can only change when negative edge of the
clock comes. The next state values of B and 4 are dependent on current inputs Sg, Rg and 54, R4 at the time of
clock trigger. As done before, these input values are derived following relations given in the circuit diagram,
ie.54=A",Ry=Aand Sp=AB’, Rg= A (suffix n can be ignored). For B=0,A=0we getSy=1,R;=0, 53
=0 and Rg = 1 and these values can change only when B and 4 change, i.e. in next clock cycle. Thus above
values of SR inputs of two flip-flops continue till next negative edge of the clock. For 5g =0 and Rg= 1, at the
negative edge of clock B remains at 0 (from truth table of SR flip-flop). Similarly for S, =1, R4 = 0 flip-flop
A moves to 1. Thus we get B and 4 value of next clock cycle. Following above relation we now calculate SR
input values of these flip-flops as §4, =0, R, =1, Sp = | and Rz = 0 and these again remain constant up to
next negative edge of the clock. Here as S =1 and Rg =0, Bmoves to 1 and as §, =0, Ry =1, A moves to
0 and remains constant till next clock trigger. SR inputs are again calculated and this process is continued for
subsequent clock cycles. In each of these clock cycles we calculate and draw the output following relation
X = AB. The timing diagram shows the states get repeated as 00— 01— 10— 11 — 00, and so on. Repetition
occurs after every fourth clock cycle. The output X' = 48, accordingly shows repetition as 050-50—-51-0
and remains high for one clock period every time flip-flop output becomes B=1,4=1.

A detailed analysis of various configurations of counter and its timing diagram will be presented in Chapter
10,

. WA A

21. What is analysis of sequéntial circuit? (
22. Which of truth table and éxcitation table is useful for analysis of a sequential circuit?

' Explain the function of the circuit shown in Fig. 8.40 through state transition diagram.

Solution The D flip-flop input can be written as D= X® (), and output ¥ = XQ;. Figure 8.41() shows the state table
and Fig. 8.41(b) its state transition diagram. Note that, the circuit follows Mealy model and at any given state output is

@ Digital Principles and Applications

generated from input to that state, Thus, ‘—'
outputs are shown by the side of the in- X—
put in state transition diagram to right of D_— b
the input and is separated by a */ sign.
On careful observation, we can see
something interesting in above circuit. If _
we ignore ¥, then the D flip-flop block ¥
with Ex-OR gate as connected behaves

like a T flip-flop where T=X.

0l

State transition diagram of Example 8.11

Qn X D=X® Qn Qn +1 Y= Xéf: -1/
oo 0 0 0 ' ~
0|1 1] I 0/ ‘o.o’ 010
1|0 1 1 0 L : e
| i 0 0 0 Mo
@ Ly

41 ") Solution to Example 8.11: (a) State table, (b) State fra’hsition_'dia'g'r_’am

8.12 CONVERSION OF FLIP-FLOPS:
A SYNTHESIS EXAMPLE *

Knowledge about how flip-flop of one type can be converted to another may be useful on various count. Say,
when we have designed the circuit with one type and for implementation we get a different type from the
store or the market. Redesign of the problem with available type of flip-flops may take considerable amount
of time if the circuit is very complex. Instead one can convert the available type using few basic gate 1o the
type in which design is done and implement the existing design.

Conversion of JK to SR, D, T is fairly straightforward as we see from their respective truth tables or
characteristic equations. For example, one need not do anything extra to replace SR flip-flop from a design
if SR flip-flop is not available, by JK flip-flop. This is because their truth tables are same except for input
combination 11, which in design with SR flip-flop is taken care of not to appear in the input side. Hence,
replacing SR with JK flip-flop does not pose any problem. However, the reverse is not true. In design with
JK flip-flop there remains possibility of 11 appearing at input side and that combination of input is forbidden
for SR fiip-flop. Again, comparing truth tables or characteristic equations of JK and D flip-flops we see that
putting an inverter from J to K (K = J) we get D flip-flop from JK flip-flop where J=D. T flip-flop can be
obtained from JK flip-flop by making T=J=X.

We show here how to convert an SR flip-flop to a JK flip-flop through a systematic approach, as a general
methodology for synthesis or design of sequential logic circuit. A detailed study on various design problems
and related issues are presented in Chapter 11.

In step one of this method, we look into JK flip-flop truth table and specifically note, 0,—(,.; transitions
for a given combination of inputs /K and present state (.. Since the synthesis element is SR flip-flop we shall

Flip-Flops

refer to its excitation table to identify SR input combination for a required (),—Qp+1 transition. Table 8.2
shows truth table of JK flip-flop as well as necessary SR inputs for 0,— transitions. Such tables are also

known as sfate synthesis table.

State Synthesis Table for SR to JK Flip-Flop Conversion

In Ky On = Onr1 Sn Ry
0 0 0 0 0 X
0 0 1 1 b 0
0 1 0 0 0 X
0 1 1 0 0 1
1 0 0 1 1 0
1 0 1 1 X 0
1 1 0 | 1 0
1 1 1 0 0 1

The next step is to write SR inputs as a function of JK inputs and present state 0, Karnaugh Map derived

from Table 8.2 for SR inputs are shown in Fig. 8.42 along with their design equations.

JI’IKH
ON_00 01 11 10
of o] o |[[L [
1] x| o] 0| x
Sfl =JHQH

The final synthesized circuit devel-
oped from these equations, are shown
in Fig. 8.43. The functional block with-
in dotted lines made up of an SR flip-
flop and two AND gates, behave like a
JK flip-flop.

Thus conversion between flip-flops,
in simple cases can be done comparing
their respective truth tables. For other
cases, the steps shown above can be
followed. Refer to Example 8.13 and
Problems .30 to 8.32.

23. Why flip-flop conversion is needed?
24. What is the basic difference between analysis and synthesis steps?
25. What is the difference between state analysis table and state synthesis table?

J]l Kll

Q, 00 01 11 10
0 x X 0 0
1 0 |1 ll 0

RH = Kﬂ Qﬂ

Karnaugh Map and Design equations for SR inputs

Ay 7

A

(SSEL

@

Ql

Conversion of SR flip-flop to JK flip-flop.

Digital Principles and Applications

Show how a D flip-flop can be converted to SR flip-flop.

Solution Note characteristic equation of two flip-flops.
- For SR flip-flop: Onvy =S+ R'Qy and for D flip-flop: Qps1 =D

Thus with D =8 + R'Q, we get circuit shown in Fig. 8.44 which behaves like an SR flip-flop but made from a D
flip-flop and basic logic gates. Method as shown in Section 8.11 alse gives same solution,

- @LFig. 332 solution for Example 8.11. D flip-flop converted to SR flip-flop

8.13 HDL IMPLEMENTATION OF FLIP-FLOP

We continue our discussions on HDL from earlier chapters and in this section we look at how to represent
a flip-flop using Verilog HDL. As discussed before, behavioral model is preferred for sequential circuit and
always keyword is used in all these circuits. Since, sequential logic design also includes combinatorial desi gn
at somne places we may use dataflow model for that. To start with let us see how a [latch (Fig. 8.15) and SR
latch (Fig. 8.11) are expressed in HDIL.. We have used characteristic equation corresponding flip-flops given
in Section 8.9. The explanation of the codes are simple. If EN = 1, output changes according te equation and
if EN = 0, output does not change, i.e. remains latched to previous value,

module Dlatch{D,EN,Q); module SRLatch(S,K,EN,Q);

input D,EN; input S,R,EN;

output Q; output Q; '

reg Q; reg Q;

alwaya @ (EN or D) always € (EN or S or R)
“if (EN) Q=D; if (EN) Q=S| (~R&Q);

. //from characteristic equation
// from characteristic equaticn :

endmodule endmodule

Next we discuss how to describe a clocked flip-flop. The following Verilog code describes a D flip-flop
with positive edge trigger, negative edge trigger and positive edge trigger with reset (CLR) givenin Figs. 8.23
{a), (b) and (c) respectively. Here, the CLR input is active low, i.e. it clears the output (0 =0)when CLR is 0.
We use keywords posedge and negedge for this. With keyword always it ensures execution of always block
once every clock cycle at corresponding edge. For asynchronous CLR we use a particular nomenclature of
Verilog HDL. The always sensitivity list (afier @) contains any number of edge statements including clock

Flip-Flops @

and asynchronous inputs. The always block puts all asynchronous conditions in the beginning through else
or else if and the /ast else statement responds to clock transition.

modula DFFpos{D,C,Q); module DFFneg(D,C,Q); module DFFpos_clr(D,C,CLR,Q);
input D,C; //C is clock imput D,C; //C is clock imput D,C,CLR; //C is clock
output 0O; output Q; output Q;
reg O; reg Q; reg ;
always @ {posedge C) always@ (negedge C) always @ (posedgeCornegedgeCLR)
Q=D; Q=D; if (~CLR) Q=1'b0;
endmodule endmocdule //Q stores 1 binary bit 0
else Q=D;
endmodule

(: Example 8.14) Write a Verilog code that converts an D flip-flop to an SR flip-flop following Fig. 8.43 of
Section 8.11.

Solution The code is given as follows. See how combinatorial logic part of the circuit is expressed by assign
statement.

module SRFFneg(S,R,C,Q);

imput S5,R,C; //C is clock

output Q;

wire DSR;

assign DSR = S| {(~R&Q): //combinatorial logic shown in fig.8.45
DFFneg DI1(DSR,C,Q); //instantiates negative edge triggered D FF
endmodule

module DFFneg(D,C,Q):

input D,C; //C is clock

output Q§;

reg Q;

always (¢ (negedge C)
Q=D;

endmodule

Explain the use of following Verilog code in test bench preparation of sequential logic
circuit,

Initial
begin
clk = 1'b0;
repeat (20)

#50 clk = ~clk;
end

Solution The keyword initial says following code is run for once. The variable ‘cIk’ is of 1 binary digit and is
initialized with 0 at time = 0. Keyword repeat ensures repetition of following statement 20 times. In that statement,

@ Digital Principles and Applications

variable clk is complemented after a delay of 50 ns. Thus, clk toggles between ! and 0 every 50 ns and for 20 times
generating 10 cycles of 50 + 50 = 100 ns duration each. In a test bench, clk can be fed as ctock input to simulate’ a
sequential circuit for a finite duration. The number of clock pulse generated can be changed by changing number after
repeat and clock period can be changed by changing delay after # sign, '

The Verilog code given in first column generates output given in second column and
corresponding timing waveform is given next. Draw the digital circuit diagram from Verilog
code and explain the output.

module CKT_XYZ (Q,Q BAR,D,CLK);
output Q,Q BAR;
input D, CLK;

wire X, Y;

nand Ul (X,D,CLK) ; 0 CLK = 0, D=1, 0 = =
nand U2 (Y,X,CLK) ; 10 CLK =0, D=20, Q0 = x
nand U3 (Q,Q BAR,X); 20 CLK =1, b=20, Q=20
nand U4 (Q BAR,Q,Y); 40 CLK =0, D=1, 0 =0
endmodule 60 CLK =1, D=1, ¢ =1
module EestCKTAXYZ; 70 CILK =1, D=0, Q=20
wire Q, Q BAR; 80 CLK =90, D=0, 0=20
reg D, CLK; 100 CLK =1, D=1, ¢ =1
CKT _XYZ =xyz(Q, @ BAR, D, CLK); 120 ClK =0, D=1, ¢ =1
initial

begin

Smonitor (Stime, “CLK = %bh, D= %b,
Q= %b\n”,CLK,D,Q);
D=1;CLK=0;
$#10 D = 0; #30 D = 1; #30 D = O;
#30 D = 1;
#40 S$finish; /* the module will terminate after
140ns*/
end
always
#20 CLK = ~CLK:
endmodule

Ons ‘20n5 |40ns |60ns iSOnS :100ns 12003
H | H I L L | I N L H | i L I H I\ I\ i L bl | |
TestCKT XYZ.Q ﬁ N

TestCKT XYZ.Q_BAR BB
TestCKT XYZ.D
TestCKT _XYZ.CKL

Solution The circuit diagram from the structural model given in the code is shown in Fig. 8.45. The test bench
displays in the monitor time elapsed and CLK, D, Q (in binary) through first statement after begin. D initially -1
toggles after a delay of 10ns, 30 ns, 30 ns, 30ns. Simulation stops after further 40 ns taking a total time of 10+ 30 +
30 +30 + 40 = 140ns. Clock toggles at every 20 ns starting with a value &

Flip-Flops @

 The circuit shows that if CLK =0, Ut ssd 2 outputs, . . p
are 1 irrespective of other inputs and O, 0. BAR remains '
labchedmprevmusvalnethroughcmsscouplediﬂand -

Ud4. When CLK = 1, D can change Ul output such that:x ~ - CLK
= D' also final output Q= D. . The timing diagram shows.
O BAR = (. Thus the circuit behavesﬁkcahlgh level
mggeredDﬂlp-Fiop

U3 2

U4
U2 p— 0 BAR

Circuit diagram of Verilog
code given in Example 8.16

Analyze the circyit shown in Fig. 8.46 and find the output Y. Consider that the flip-flops are
initially reset.

T H oL

b CLE O l—PCLK O+

Sot‘www Wefollowthreed:ﬁ‘ rent 'nﬁaﬁs_wanﬂyzeﬂxémmtand 1demfytheperfonmnce of ¥.

iIn Me’thod«! “we use staté npproach We fnake use of the fact that & T flip-fop does not change

: 1msmw:fT~0butuwggies hen 7= Iattheclocktngger
- Let us name the first: and jts.input and output as Ty and X respectively. Similarly, let the
second flip-lop be named Ymd _'_mputis wahxle its outputis already assigned as Y. Then, the state
- table'is shown in Fig. 8.47. ‘W find that the circuits move from states 00, 01, 10, 00, . .. repetitively and

'.ﬂaeoutputY goes l“-IIGHonce _c_es_andremams HIGH for one clockpenod
mcyﬂe er Yn :X-;“%n”"yn =Xy Xpu Yas1
0 ,,'__.o=.0 0 1 0 1
IS T EE O T B 1 1 0
2 10 1 0 0 0
'.3_ 0 {3 e repeals

g : m St;te Tabie to analyze cu'cult d:agram of Flg. 8.47
In m&sod.z, “we make use of the chmactensuc equatwn of Tﬂlp-ﬂop ‘
From Section 8.9, we kmw that 01 =TQ, +T'0,

@ Digital Principles and Applications

By following similar X and ¥ naming of two flip-flops as in Method-1, we find that

For X flip-flop, input: Ty =X, + ¥,
output: X1 = (X, +)X, + (X, + Y,,)’X
=Y, X, +X, ¥, X,
=Y, X,
For Yflip-flop, input: Ty =X,
: output: ¥,y =X, ¥, +(X,))'Y,
=Xy Yy + X, Yy
The final solution is shown in Fig. 8.48. N
X Y | X1=Ye Xy Y =X+ X, Y,
o0 0 0 1
0 1 1 0
1 0 0 0
0 o repeats

_) Solution using Method-2

In Method-3, we make use of the timing diagram as shown in Fig. 8.49. We note that the flip-flops

are positive edge triggered. The T input just before the positive cdge decides: output of the flip-flop in
next cycle.

e TLILILILLN

X

Solution using Method-3

We start with initial X7 = 00. Then we draw 7'y by CRing X and ¥ waveforms and Ty by inverting
Y waveform. Ty and Ty before positive edge decide value of X and ¥ respectively in next clock cycle
{from T flip-flop truth table).

Flip-Flops @

A flip-flop is an electronic circuit that has two stable states. It is said to be bistable. A basic RS flip-flop,
or latch can be constructed by connecting two NANIY gates or two NOR gates in series with a feedback
connection. A signal at the set input of an RS flip-flop will force the Q output to become a 1, while a signal
at the reset input will force Q to become a 0.

A simple RS flip-flop or latch is said to be transparent.~that is, its output changes state whenever a
signal appears at the R or § inputs. An RS flip-flop can be modified to form a clocked RS flip-flop whose
output can change states only in synchronism with the applied clock.

An RS flip-flop can also be modified to form a D flip-flop. In a D latch, the stored data may be changed
while the clock is high. The last value of D before the clock returns low is the data that is stored. With edge-
triggered D) flip-flops; the data is sampled and stored on either the positive or negative clock edge.

The values of] and K determine what a JK flip-flop does on the next clock edge. When both are low, the
flip-flop retains its last state. When [is low and K is high, the flip-flop resets. When J is high and K is low,
the flip-flop sets. When both are high, the flip-flop toggles. I this last mode, the JK flip-flop can be used as
a frequency divider.

There are various ways to represent a flip-flop like truth table, characteristic equation, state transition
diagram or excitation table. Flip-flop treated as a finite state machine highlights its functional aspect.
Analysis of a sequential circuit helps to understand performance of a given circuit in a systematic manner
and through synthesis we develop circuit diagram for a specified problem.

= [latch Another term for an RS flip-flop.

» Mealy model output is dependent both on
curient state and input to the circuit.

= Moore model output is dependent only on
current state of the circuit.

* propagation delay The amount of time it takes
for the output to change states after an input
trigger.

= setup time The minimum amount of time
required for data inputs to be present before
the clock arrives.

= srate the sct of memory values at any given
time for a sequential logic circuit.

= synchronous When outputs change states
in time with a clock. A clock signal must be
present in order for the outputs to change
states,

* fransparent The condition that exists when
the flip-flop output changes immediately after
its inputs (R, §, J/, K, D) change state.

* asynchronous Independent of clocking. The
output can change without having to wait for
a clock pulse.

» bistable Having two stable states.

v bistable multivibrator Another term for an RS
flip-flop.

v buffer register A group of memory elements,
often flip-flops, that can store a binary word.

» characteristic equation logic expression
describing a flip-flop.

= edge triggering A circuit responds only when
the clock is in transition between its two
voltage states.

s finite state machine functional description of
sequential circuit.

v flip-flop An electronic circuit that has two
stable states.

* hold time The minimum amount of time that
data must be present after the clock trigger
arrives.

@

Digital Principles and Applications

. PROBLEMS .

8.1 List as many bistable devices as you can think
of—either electrical or mechanical. (Hint:
Magnets, lamps, relays, etc.)

8.2 Redraw the NOR-gate flip-flop in Fig. 8.3b
and label the logic level on each pin for R =§
=0.Repeatfor R=S=1,forR=0and S=1,
and forR=1and §=0.

8.3 Redraw the NAND-gate flip-flop in Fig. 8.7a
and label the logic level on each pin for R =
§=0. Repeatfor R =S =1, for R = 1, and
E:O,andforﬁ=0and§= 1.

8.4 Redraw the NAND-gate flip-flop in Fig.
8.8a and label the logic level on each pin for
R=5§5=0.RepeatforR=5=1, for R=0and
§=1,andforR=1and $=0.

8.5 The waveforms in Fig. 8,50 drive the clocked
RS flip-flop in Fig. 8.11. The clock signal goes
from low to high at points 4, C, £, and G. If
is low before point A in time:

a. At what point does ¢ become a 17
b. When does Q reset to 0?

CLK
ABCDEFGH

8.6 Use the information in the preceding problem
and draw the waveform at 0.

8.7 Prove that the flip-flop realizations in Fig,
8.12 are equivalent by writing the logic level
present on every pin when R = S = 0 and the
clock is high. Repeat for R=S5=1forR=1
and § =0, and for R =0 and S = 1. Describe
what happens when the clock is low.

8.8 The waveforms in Fig. 8.5] drive a D latch
as shown in Fig. 8.15. What is the value of D
stored in the flip-flop after the clock pulse is
over?

8.9 What is the advantage offered by an edge-
triggered RS flip-flop over a clocked or gated
RS flip-flop?

8.10 The waveforms in Fig. 8.18d illustrate the
typical operation of an edge<riggered RS
flip-fiop. This circuit was connected in the
laboratory, but the R and S inputs were
mistakenly reversed. Draw the resulting
waveform for Q.

8.11 An edge-triggered RS flip-flop will be used
to produce the waveform Q with respect to
the clock as shown in Fig. 8.52a. First, would
you use a positive-edge- or a negative-edge-
triggered flip-flop? Why? Draw the waveforms
necessary at R and S to produce Q.

C_ITUIULi s,

1 1] 1
o 1 1 G

ol [LI

(b

B

8.12 An edge-triggered RS flip-flop will be used to
produce the waveform @ with respect to the

Flip-Flops

clock as shown in Fig. 8.52b. First, would
you use a positive-edge- or a negative-edge-
triggered flip-flop? Why? Draw the waveforms
necessary at 8 and S to produce (.

8.14

8.15

8.16

8.17

8.18

8.19

8.20

A positive-edge-triggered D flip-flop has the
input waveforms shown in Fig. 8.51. What is
the value of O after the clock pulse?
Anegative-edge-triggered D flip-flop is driven
by the waveforms shown in Fig. 8.51. What is
the value of D stored in the flip-flop?
A D flip-flop has the following data sheet
information: setup time = 5 ns; hold time = 10
ns; propagation time = 15 ns.
a. How far ahead of the triggering clock
edge must the data be applied?
b. How long after the clock edge must the
data be present to ensure correct storage?
¢. How long after the clock edge before the
output changes?

Redraw the JX flip-flop in Fig. 8.23a, Connect
J =K = 1. (This can be done by connecting
the J and X inputs to -+¥¢c) Now, begin with
Q = 1, and show what logic level results on
each pin after one positive clock pulse. Allow
one more positive clock pulse and show the
resulting logic level on every pin.

In the JK flip-flop in Fig. 8.25a, J=K=1. A
1-MHz square wave is applied to its C input.
It has a propagation delay of 50 ns. Draw the
input square wave and the output waveform
expected at . Be sure to show the propagation
delay time.

Repeat Prob. 8.17, but use the flip-flop in Fig.
8.25c.

In Prob. 8.17, what is the period of the clock?
What are the period and frequency of the
output waveform at O?

Repeat Prob. 8.17, assuming that the C input
has a frequency of 10 MHz.

8.21

8.22

8.23

8.24

8.26

@

Draw two flip-flops like the one shown in Fig.
8.25b and show how to connect them such
that a 500-kHz square wave applied to pin 1
will result in a 125-kHz square wave at pin 11.
Give a complete wiring diagram (show each
pin connection).

Explain the meaning of the symbol 1 in Fig.
8.29a.

What is the significance of the symbol _in
the truth table of Fig. 8.297

Why do most modern designs incorporate
edge-triggered JK flip-flops rather than pulse-
triggered JK flip-flops?

Show how to use a simple RS latch to
eliminate switch contact bounce (see Fig.
8.32a).

There is contact bounce present with the
SPDT switch in Fig. 8.53 just as with the
SPST switch discussed in Fig. 8.31. However,
the RS latch used in Fig. 8.53 will remove all
contact bounce, and ¥, will be high with the
switch in position 1 and Jow with the switch in
position 2. Explain exactly how this debounce
circuit works. You might use waveforms as an
aid. Incidentally, the 54/74279 can be used to
construct four of these circuits.

Ve

4.7k 47k

SPOT
switch

Q‘I

1/4-74279

Debounce circuit

@ Digitaf Principles and Applications

(&

8.27 (a) Derive the characteristic equation and (b)
draw state transition diagram of the fictitious
flip-flop described in Example 8.10.

8.28 Explain the difference between Mealy and

tl 9 . —

Moore model of sequential circuit. Fig. 8.54
8.29 Analyze the following circuit and explain)

what it does. 8.31 Convert T flip-flop to D flip-flop.
’ - 8.32 Convert SR flip-flop to T flip-flop.

8.30 Show how to convert D flip-flop to JK flip-

flop.
. LABORATORY EXPERIMENT .
AIM: The aim of this experiment is to study - Kl QI QIUGND K2 Q2 Q2" 12
D flip-flop and JX fiip-flop and use them for | I f f]] |
analysis of sequential logic circuits. 16 15 14 13 12 11 10 9
Theory: The truth table of D flip-flop and >1 2 3 Z4756 6 7 &
JK flip-flop are as follows. l T T ’ l] T
C DI Qwn CKICLRIPREIJl SV CK2CLR2PRE2
0 X | @, (Last state)
T o 0
T 1
! r o —I o ¥
c J K | 4 | Action K K
T oo @, (Last state) | No change hCLK D bolk Ol—
T o1 0 RESET ’— r
T 10 1 SET Clok !
T 11 ¢, (toggle) Toggle JK fiip-flop: Qe =JO, + K'Q,
Their characteristic equations are: Apparatus: 5 VDC Power supply, Multime-
DAflip-flop: 0,4, =D, ter, Bread Board, Clock Generator, and Oscil-
loscope
5V CLR2 D2 CK2PRE2 Q2 Q2
1 i I l l I l Work element: IC 7474 is a dual, edge
4 13 12 1 10 9 8 clocked, D flip-flop with both PRESET and
D 7474 CLEAR input while 7476 is a dual, edge
I 2 3 4 5 ¢ 7 clocked, JK flip-flop that too, has both PRE-

T T T 7T SET and CLEAR input. Verify the truth table

of IC 7474 and 7476. Find if it is positive or
CLRi DI CKIPREI Q1 Ql’ GND

Flip-Flops

negative edge triggered. Appreciate the func-

tion of PRESET and CLEAR if it is asynchro-

nous or synchronous with clock. The clock
may be available from clock generator or you

may use 555 based pulse generator developed - -
in laboratory experiment of previous chapter.

1. R stands for RESET (Q = L). S stands for-

SET (Q = H).

2. Quad means “four.” There are four flip- .

flops in this IC.
3. A NAND-gate latch is considered active-

low because a low input signal is reqmred '

to change Q.

4. X means don’t care—this mput at this time
has.no effect,.

5. Simply hold the EN input Tow (at 0 Vdc).

6. The D flip-flop is-easier to use because it
requires-only one input (D). '

7. It means the output. Tesponds. mmgdnately .

to input s1gnals

8. . A circuit is activated by the Ieadmg edge of .. -

the clock.

9.. The latch is transparent. Theedge—Mggered 3

flip-flop only changes staté in synchronism
with the clock.

16. None: The ftip-flop is dJsabled with C held
low.

11. PRESET is active high. 4 hlgh level at
PRESET will set O high.

12. The JK flip-fiop has an additional input

' condition—J = K = H. This causes the
flip-flop to toggle with the clock. The R= 5
= H input condition is not allowed with an
&S flip-flop. _

13. Cross-couple the outputs back to the input
AND gates,

14. The J and X inputs are transparent ina
pulse-triggered flip-flop. Thus, J and K
must be static while the clock is high.

15. While C is high, the master is SET-RESET
according to the J and K inputs. When

@

Connect 7476 and 7432 (OR gate) as shown,
so that the analysis circuit is realized. Use
CLEAR fto initialize both the flip-flops to 00.
Then apply clock, and see the clock and ¥ in
a dual trace oscilloscope. Use 7474 to prepare
an SR flip-flop as shown in Fig. 8.43 and find
its truth table.

© C poes low, the contents of the master
shift into the slave, and is SET-RESET
accordingly.
16. Switch contact bounce is the bouncing that
occurs when a mechanical, spring-actuated
device is operated.

~ 17. The bouncing action produces multiple

'PTs and NTs, which may introduce
- - unintentional signals!
18. Logic relation showing next state as
a function of current state and current
inputs.
19. That explains the functional behavior of
 a sequential circuit through finite number
. states and its transition from one state to
. another.

-20. Tt is truth table writien in a reverse way

such that inputs are shown dependent on a
particular state transition.

21. Finding what a given circuit does.

22. Truth table.

23. By this one need not redesign the
whole circuit if flip-flop one kind is not
available.

24. In analysis, problem begins with a circuit
diagram and ends in state transition
diagram or performance description. It
uses flip-flop truth table or characteristic
equation in this process. In synthesis, the
path is reverse and we use excitation table
instead of truth table.

25. In state analysis table, input of the flip-
flops used in the circuit is written first
followed by state tramsition whereas in
state synthesis table it is other way.

—e-e 4

Registers

Understand serial in—serial out shift registers and be familiar with the basic features
of the 74LS91 register

Understand serial in-parallel out shift registers and be familiar with the basic features
of the 74164 register

Understand parallel in—serial out shift registers and be familiar with the basic features
of the 74166 register

Understand parallel in—parallel out shift registers and be familiar with the basic
features of the 74174 and 7495A registers

Understand working of Universal shift register with the basic features of the 74194
register.

State various uses of shift registers

¢ 4+ o+ o+ s

A register is a very important digital building block. A data register is often used to momentarily store binary
information appearing at the output of an encoding matrix. A register might be used to accept input data from
an alphanumeric keyboard and then present this data at the input of a microprocessor chip. Similarly, registers
are often used to momentarily store binary data at the output of a decoder. For instance, a register could be
used to accept output data from a microprocessor chip and then present this data to the circuitry used to drive
the display on a CRT screen. Thus registers form a very important link between the main digital system and
the input-output channels. A universal asynchronous receiver transmitter (UART) s 2 chip used to exchange
data in a microprocessor system. The UART is constructed using registers and some control logic.

A binary register also forms the basis for some very important arithmetic operations. For example, the
operations of complementation, multiplication, and division are frequently implemented by means of a
register. A shift register can also be connected to form a number of different types of counters. Shift registers

Registers @

as sequence generator and sequence detector and also as parallel to serial converters offers very distinct
advantages.

The many different applications of registers, along with the myriad of techniques for using them, are
simply too numerous to be discussed here. Our intent is to study the detailed operation of the four basic types
of shift registers. With this knowledge, you will have the ability to study and understand exactly how a shift
register is used in any specific application encountered.

. 9.1 TYPES OF REGISTERS .

A register is simply a group of flip-flops that can be used to store a binary number. “There must be one flip-
flop for each bit in the binary number. For instance, a register used to store an 8-bit binary number must
have eight flip-flops. Naturally the flip-flops must be connected such that the binary number can be entered
{shifted) into the register and possibly shifted out. A group of flip-flops connected to provide either or both of
these functions is called a shift register.

The bits in a binary number (let’s call them the data) can be moved from one place to another in either
of two ways. The first method involves shifting the data 1 bit at a time in a serial fashion, beginning with
etther the most significant bit (MSB} or the least significant bit (LSB). This technique is referred to as serial
shifting. The second method involves shifting all the data bits simultaneously and is referred to as parailel
shifting.

There are two ways to shift data into a register (serial or parallel) and similarly two ways to shift the data
out of the register. This leads to the construction of four basic register types as shown in Fig. 9.1—serial in—
serial out, serial in—parallel out, parallel in—serial out, and parallel in—parallel out. All of these configurations
are commercially available as TTL MSI/LSI circuits, For instance:

Serial in—serial out—54/741L.591, 8 bits

Serial
data — 8 bits
input
Serial : : Serial | |- _____ | |
data —=f © §bits |{— data MSB LSB
input . output Parallel data outputs
(a) Serial in—serial out (b) Serial in—-parallel out
Parallel data inputs
—
MSB LSB
Parallel data mputs
—_— -
MSB LSB
_____ 8 bits
Serial
8 bits data | F---- N
output MSB LSB
-
Parallel data outputs
(c) Parallel in-serial out (d) Serial in—parallel out

Shift register types

@ Digital Principles and Applications -

Serial in—parallel out—54/74164, 8 bits
Parallel in-serial out—>54/74165, 8§ bits
Parallel in—parallel out-—54/74]198, 8 bits

We now need to consider the methods for shifting data in either a serial or parallel fashion. Data shifting
techniques and methods for constructing the four different types of registers are discussed in the following
sections.

. 9.2 SERIAL IN-SERIAL OUT .

In this section we discuss how data is serially entered or exited from a shift register. The flip-flops used to
construct registers are usually edge-triggered JK, SR or D types. We begin our discussion with shift registers
made from D type flip-flops and then extend the idea to other types.

Constder four D flip-flops connected as shown in Fig. 9.2a forming 4-bit shift register. A common clock
provides trigger at its negative edge to all the flip-flops. As output of one D flip-flop is connected to input of
the next at every clock trigger data stored in one flip-flop is transferred to the next. For this circuit transfer
takes place like this Q — R, R — S, § — T and serial data input is transferred to (. Let us see how actual
data transfer takes place by an example,

Assume, all the flip-flops are initially cleared. Let a binary waveform, as shown along D of
Fig. 9.2b be fed to serial data input of the shift register. Corresponding Q, R, S, T are also shown in the
figure.

At clock edge A, flip-flop (has input 0 from serial data in D, flip-flop R has input 0 from output of (,
flip-flop § has input 0 from output of R and flip-flop T has input 0 from output of §. When clock triggers, these
inputs get transferred to corresponding flip-flop outputs simultaneously so that ORST = 0000. Thus at clock
trigger, values at DORS is transferred to ORST.

1
1
data ')
Serial (17 €@ J R J 5 J I input K —:_,"l_‘_r'_
1 i
data —a> —ab> —ab | |
input = —= Fq} - - 1 ! !
K 0 K R K S K Th— 2, j | [0
1 [} I 1
Clock | i | '
Ry 4 L T
o
S N N T
S
T 0 0

Registers (@

™

At clock edge B, serial data in =0, i.e. DQRS=0000. So after NT at 8, QRST = 0000. Serial data becomes
1 in next clock cycle.

At clock edge C, DORS = 1000 and after NT QRST = 1000. Serial data goes to 0 in next clock cycie such
that at clock edge D, DORS = 0100 and after NT QRST = 0100. Example 9.1 will give another illustration
of such data transfer.

A shift register made up of JK or SR flip-flops has non-inverting output ¢ of one flip-flop connected to J or
S input of next flip-flop and mverting output @’ connected to X or R input respectively. For the first flip-fiop,
between J and K (or S and R) an inverter is connected and J (or S) input is treated as serial data in. Note that,
in this configuration both JK and SR flip-flops effectively act like a D flip-flop.

Show how a number 0100 is entered serially in a shift register shown in Fig. 9.2a using state
table.

Solution Figure 9.3 presents the state table. The timing diagram corresponding to this is discussed in this section.
_ Note how the data flow across the flip-flops is highlighted by arrow direction.

Clock | Serial input o R S T

N NN NN
B s NSNS
0 T U NN
NN,

' -Data transfer through serial input in a shift register

Draw the waveforms to shift the number 0100 into the shift register shown in Fig. 9.3 on the
next page.

Solution The waveforms for this register will appear exactly as in Fig. 9.2 provided the waveform labeled X is
climinated and waveform J is labeled D.
r>

4-bit serial input shift register

Serial
data

input r
Clock—

M~
0l
o

o]

)

)

v

T

3
3

T}l

At this point, we have developed the ideas for shifting data into a register in serial form; the serial data
input can be classified as either JK or D, depending on the flip-flop type used to construct the register. Now,
how about shifting data out of the register?

@ Digital Principles and Appfications

Let’s take another look at the register in Fig. 9.3a, and suppose T
that it has the 4-bit number QRST = 1010 stored in it. If a clock sig- e

nal is applied, the waveforms shown in Fig. 9.4 will be generated. Clock ! [‘[] [_I "[
0

Here’s what happens:

-
-
-0
-t

] 1 1 1

I 1 3 F
Before Time A The register stores the number ORST=1010. The i ',’ ‘,’ ? f
LSB (a 0) appears at T, D 0 i : i L
At Time A The entire number is shifted one flip-flop to the right. 1 ; i | E
A0 is shifted into Q and the LSB is shifted out the right end and lost. g, ! . ; i 1 0
The register holds the bits ORST = 0101, and the second LSB (a 1) ! ! : !
appears at T. R (]] 0 | | ' K
At Time B The bits are all shifted one flip-flop to the right, a 0 : i : E
shifts into (), and the third LSB (a 0) appears at 7. The register holds Y (l) '
ORST = 0010.
At Time C The bits are all shifted one flip-flop to the right, a 0 T (]}

shifts into Q, and the MSB (a 1) appears at 7. The register holds
QRST=0001.

At Time D The MSB is shifted out the right end and lost, a 0 shifts
into O, and the register holds QRST = 0000,

To summarize, we have caused the number stored in the register to appear at T (this is the register output)
1 bit at a time, beginning with the LSB, in a serial fashion, over a time period of four clock cycles. In other
words, the data stored was shifted out of the register at flip-flop T in a serial fashion. Thus, not only is this a
serial-input shift register, it is also a sertal-output shift register. It is important to realize that the stored number
is shifted out of the right end of the register and lost after four clock times. Notice that the complement of the
output data stream is also available at T .

The pinout and logic diagram for a 74LS91 shift register are shown in Fig. 9.5. This is an
8-bit TTL MSI chip. There are eight RS flip-flops connected to provide a serial input as well as a serial output.

[1a] i3] [1a] [u] [ro] [o] [3]
0

Q¢ B GND 4 (LK

74LS91
Ve
L 2] B T T] 7
(a) DIP pinout
o § 25 91— ¢—s eb—s ol—|s ol s ols o
<+ > > > > > > >
R OFt4R OH+R QHHR OHAR OH-HR OH-r OHdr o|—

Clock —% ¢ *

(b} Logic diagram

741591 8-bit shift register

Registers @

The clock input at each flip-flop is negative-edge-trigger-sensitive. However, since the applied clock signal is
passed through an inverter, data will be shifted on the positive edges of the input clock pulses.

The inverter connected between R and S on the first flip-flop means that this circuit functions as a D-type
flip-flop. So, the input to the register is a single line on which the data to be shifted into the register appears
serially. The data input is applied at either 4 (pin 10) or B (pin 12). Notice that a data level at A4 (or B) is
complemented by the NAND gate and then applied to the R input of the first flip-flop. The same data level
is complemented by the NAND gate and then complemented again by the inverter before it appears at the S
input. So, a 1 at input A will set the first flip-flop (in other words, this 1 is shified into the first flip-flop) on a
positive clock transition.

The NAND gate with inputs 4 and B simply provides a gating function for the input data stream if desired.
If gating is not desired, simply connect pins 10 and 12 together and apply the input data stream to this
connection.

Examine the logic levels at the input of a 74L591 and show how a 1 and then a ¢ are shifted
into the register,

Solution The input logic and the first flip-flop are redrawn in Fig. 9.6a, and a 1 is applied at the data input 4. The
R input is 0, the S input is 1, and the flip-flop will ciearly be set when the clock goes high. In other words, the 1 at the
data input will shift into the flip-flop. In Fig. 9.6b, a 0 is applied at the data input 4. The R input is 1, the S input is 0,
and the flip-flop will be reset when the clock goes high. The input 0 is thus shifted into the flip-flop.

0 1 1 . 1 Ui 0

A A
ta) Dat
IS S Y ¢ D S S
i : —> 0 —>
' —R O} _ R O
— \0 . Qr < 1 [}
Clock {>rﬁ i ' Clock Jl>c
{a} Logic levels.shown by arrows will set - {b) Logic levels shown by arrows will
the flip-flop reset the flip-flop

Example 9.2

@EHETED

1. What is the largest decimal number that can be stored (in binary form) in a 741591 register?
2. Is a 74LS91 register sensitive to PTs or to NTs?

. 9.3 SERIAL IN-PARALLEL OUT '

The second type of register mentioned in Sec. 9.1 is one in which data is shifted in serially, but shifted out in
parallel. In order to shift the data out in parallel, it is simply necessary to have all the data bits available as
outputs at the same time. This is easily accomplished by connecting the output of each flip-flop to an output
pin. For instance, an §-bit shift register would have eight output lines—one for each flip-flop in the register.
The basic configuration is shown in Fig. 9.1b.

@ Digital Principles and Applications

The 54/74164 is an 8-bit serial input-parallel output shift register. The pinout and logic diagram for this
device are given in Fig. 9.7. It is constructed by using RS flip-flops having clock inputs that are sensitive to
NTs. A careful examination of the logic diagram in Fig. 9.7b will reveal that this register is exactly like the
741891 discussed in the previous section—with two exceptions: (1) the true side of each flip-flop is available
as an output—thus all 8 bits of any number stored in the register are available simultancously as an output
(this is a parallel data output); and (2) each flip-flop has an asynchronous clear input. Thus a low level at the
clear input to the chip (pin 9} is applied through an amplifier and will reset (clear) every flip-flop. Notice that
this is an asynchronous signal and can be applied at any time, without regard to the clock waveform and also
that this signal is level sensitive. As long as the clear input to the chip is held low, the flip-flop outputs will all
remain low. (The register will contain all zeros!)

Shifting data into the register in a serial fashion is exactly the same as the previously discussed 741991,

Data at the serial inputs may be changed while the clock is either low or high, but the usual setup and hold
times must be observed. The data sheet for this device gives setup time as 30 ns minimum and hold time as

Data E E

out}zuts E 0

Ld ™ A C
Yoo O @6 O O R K

[14] [13] [12] [] [ao] [3] [5]

= <]

54/74164

LT 2] BT T ST TeT T7]

A B 0, Oy O ¢Op GND

H_/ —y
Data Data
mputs outputs
(a} DIP pinout

el

B D“ 0, O IR @(QD O R O IR Q(_,
Loy

SQA SQB SQL‘SQD SQb-SQ[--SQ 5 ¢

oy Qg O p O Of g On

hd
Parallel data outputs
{b) Logic diagram

54/74164 8-bit shiit register

Registers @

0.0 ns. Since data are shifted into the register on PTs, the data input line must be stable from 30 ns before the
PT until the clock transition is complete.

Let’s take a look at the gated serial inputs 4 and B. Suppose that the serial data is connected to 4; then B
can be used as a control line. Here’s how it works:

B is Held High The NAND gate is enabled and the serial input data passes through the NAND gate
inverted. The input data is shifted serially into the register.

B is Held Low The NAND-gate output is forced high, the input data stream is inhibited, and the next
positive clock transition will shift a 0 into the first flip-flop. Each succeeding positive clock transition will
shift another 0 into the register. After eight clock pulses, the register will be full of zeros!

How long will it take to shift an 8-bit number into a 54164 shift fegister if the clock is set at
10 MHz?

Solution A minimum of eight clock periods will be required since the data is entered serially. One clock period is
100 ns, so it will require 800 ns minimum.

For the register in Example 9.4, when must the input data be stable? When can it be
changed?

Solution The data must be stable from 30 ns before a positive clock transition until the positive transition occurs.
This leaves 70 ns during which the data may be cha.ngmg (sce Fzg. 9.8).

l 10() DS i PT
clotk penod

..:.ﬂ - 70-[18 30_ . TR
le— data’ .
transition time txme

Example 9.5

The waveforms shown in Fig. 9.9 show the typical response of a 54/74164. The serial data is input at 4
(pin 1), while a gating control signal is applied at B (pin 2). The first clear pulse occurs at time 4 and simply
resets all flip-flops to 0.

The clock begins at time B, but the first PT does nothing since the control line is low. At time C the control
line goes high, and the first data bit (a 0) is shifted into the register at time D.

The next 7 data bits are shified in, in order, at times E, F, G, H, I, J and K. The clock remains high after
time K, and the 8-bit number 0010 1100 now resides in the register and is available on the eight output lines.
This assumes that the LSB was shifted in first and appears at Q. Notice that the clock must be stopped after
its positive transition at time K, otherwise shifting will continue and the data bits will be lost.

Finally, another clear pulse occurs at time L, the flip-flops are all reset to zero, and another shift sequence
may begin. Incidentally, the register can be cleared by helding the control line at B low and allowing the clock
to run for eight PTs. This simply shifts eight Os into the register.

@ Digital Piinciples and Applications

) A B CD E F G H I J K L
Hime ——— T]
Clear_!_]: T i r
H i I :] : : II : !
N Sy Ry B AN ?
Control(B) 1 L L L 1 L i 1 L 1 !
e ;
A :
] [2 1 1 1] i 1 1
Clock |]|||||||||i]|||||| :
i 1 ! ! ! | ' :
M |0 v O
Qs -0 R :
Op _ 10 M L1 | 0
— [! t 1
Oc_Z10 l I 1
1 ¢] 1
QD:::O f : IO ED
— ! 1 |
QE__EO | il !L
QF__EU Il |0
3 1 1
QG-—:O 1o 10
] 1]
Oy 70 10 ! 0

4. How many clock periods are required to shift an 8-bit number into a 74164 register? To
: exﬁagtag%—bitmmber? I : o :

. 9.4 PARALLEL IN-SERIAL OUT .

In prior sections, the ideas necessary for shifting data into and out of a register in serial have been developed.
We can now use these same ideas to develop methods for the parallel entry of data into a register. There are a
number of different techniques for the parallel entry of data, but we shall concentrate our efforts on commer-
cially available TTL. At first glance, the logic diagrams for some of the shift registers seem rather formidable
(see, for instance, the block diagram for the 54/74166); but they aren’t really. The 54/74166, for instance, is
an 8-bit shift register, and the same circuit is repeated eight times. So, it’s necessary to study only one of the
eight circuits, and that’s what we’ll do here.

The pinout and logic block diagram for a 54/74166 are given in Fig. 9.10. The functional description given
on the TTL data sheet says that this is an 8-bit shift register, capable of cither serial or parallel data entry,
and serial data output. Notice that there are eight RS flip-flops, each with some attached logic circuitry, Let’s
analyze one of these circuits by starting with the RS flip-flops and then adding logic blocks to accomplish
our needs,

3. What'is the setup time for a 74164 shift fegister? .

Registers @

)

Clear

Serial input)
Shifi/load “S’Dcl. [
(2) I

A

*
67(4)

Parallel
Shify [nput Output A
Vec load H Oy "G F E Clear

16 115 141131 {12{ |11{ 10| {9

Parallel inputs

[».<]

_

c

—
n 4 * *
P (%]
) i ho:
<

[T [[[| 6 M
Shify H @ G F E D
load

Serial input Clear !
Clock)
A B C D inhibit
I A I a9 il
E
1 2 3 4 5 6 7 8
Serial | 4 B C D, ClockClock GND

input v inhibit
Parallel inputs

Positive logic: see description (11) &
F

(a) Pinout

kil

12 L &

G()

L & RCK

Og

14
H()

Clock inhibit RVS

CK

(13)
On

(b) Logic diagram
54/74166

@ Digital Principles and Applications

First recognize that the clocked RS flip-flop and the attached inverter given in Fig. 9.11a form a type D
flip-fiop. If a data bit X is to be clocked into the flip-flop, the compiement of X must be present at the input.
For instance, if X =0, then R=0and §= 1, and a] will be clocked into the flip-flop when the clock transi-
tions.

(@ X0 X &9 29
P —
R R
Clock — | Clock
{(a) Type D flip-flop {b) NOR-gate added
X
X
X
o=
Control
X
Clock
(<) Control logic added
X, =1
(I
0 0) E (1) (1)
Control = 1 {0 >
(X=1) R
: Clock 0)
{d) Example 9.5

Now, add a NOR gate as shown in Fig. 9.11b. If one leg of this NOR gate is at ground level, a data bit Y
at the other leg is simply inverted by the NOR gate. For instance, if X = 1, then at the output of the NOR gate
X =0, allowing a 1 to be clocked into the flip-flop. This NOR gate offers the option of entering data from
two different sources, either X; or X;. Holding X at ground will allow the data at X, | to be shifted into the
flip-flop; conversely, holding X at ground will allow data at X, to be shifted in.

The addition of two AND gates and two inverters as shown in Fig. 9.11¢ will allow the selection of data
X) or data X,. If the control line is high, the upper AND gate is enabled and the lower AND gate is disabled.
Thus X will appear at the upper leg of the NOR gate while the lower leg of the NOR gate will be at ground
level. On the other hand, if the control line is low, the upper AND gate is disabled while the lower AND gate
is enabled. This allows X; to appear at the lower leg of the NOR gate while the upper leg of the NOR gate is
at ground level. You should now study this circuit until your understanding is crystal clear! Consider writing
0 or 1 at each gate leg in response to various inputs. To summarize:

CONTROL is High Data bit at JX; will be shifted into the flip-flop at the next clock transition.
CONTROL is Low Data bit at X» will be shifted into the flip-flop at the next clock transition.

Registers @

For the circuit in Fig. 9.11c, write the logic levels present on each gate leg if CONTROL = 1,
Xl = l and Xz =1.

Solution The correct levels are gwen in pmembéses in F;g 9.11d. The data value 1 at X] is shxﬁed inte ﬁe ﬁlp-ﬂop
when the clock transitions. :

A careful examination will reveal that exactly eight of the circuits given in Fig. 9.11c are connected
together to form the 54/74166 shift register shown in Fig. 9.10. The only question is: how are they connected?
The answer is: they are connected to allow two different operations: (1) the parallel entry of data and (2) the
operation of shifting data serially through the register from the first flip-flop Q4 toward the tast flip-flop Q.

If the data input labeled X; in Fig. 9.11c is brought out individually for each flip-flop, these eight inputs
will serve as the parallel data entry inputs for an 8-bit number ABCD EFGH. These eight inputs are labeled
A4 B, C D, E F G, and H1n Fig. 9.10. The control line is labeled shift/load. Holding this shifi/load control
line low will enable the lower AND gate for each flip-flop, and the 8-bit number will be LOADED into the
flip-flops with a single clock transition —PARALLEL input.

Holding the shift/load control line high will enable the upper AND gate for each flip-flop. If the input from
this upper AND gate receives its data from the prior flip-flop in the register, each clock transition will shift
a data bit from one flip-flop into the following flip-flop—proceeding in a direction from Q4 toward Q. In
other words, data will be shifted through the register serially! In the first flip-flop in the register, the upper
AND-gate input is labeled serial input. Thus data can also be entered into this register in a serial fashion. To
summarize:

Shift/Load is Low A single clock transition loads 8 bits of data (4BCD EFGH) into the register in parallel.

Shift/Load is High Clock transitions will shift data through the regisier serially, with entering data applied
at the SERIAL INPUT.

Notice that the clock is applied

) Inputs Internal Levels | Outputs
through a two-input NOR gate. When -
clock inhibit is held low, the clock Clear | S0 | COK | Clock | serial [Qgand 0y | 0
signal passes through the NOR gate —
inverted. Since the register flip-flops L D¢ X X X |X L L L
respond to NTs, data will shift into H L L ¥ |x Qi @0 | Cno
the register on the PTs of the clock. " L L 4 ¥ la 2l a b P
When clock inhibit is high, the NOR- N S R PR B IR I SR U
gate output is held low, and the clock H| H L 4 H |X H %o | O
is prevented from reaching the flip- i H L 3 L |x L O | Qo
flops. In this mode, the register can
be made to stop and hold its contents. " X 7 i rox Qio Do | Dro

A low level at the clear input can X = Irrelevant, H = High level, L = Low level

be applied at any time without regard ! = Positive transition ,
to the clock. and it will lmmedlately a. .. h= Steady state mput levelat 4. . .H respectwely

reset all flip-flops to 0. When not in Qo Opo = Levelat O, O .. . before steady state
use, it should always be held high. 040 O, = Level of @, or Op before most recent transition () 4

The truth table in Fig, 9.12 sum- (@9 Fig. 9.12) 54/74166 truth table
marizes the operation of the 54/74166

@ Digital Principles and Applications

8-bit shift register. You should study this table in conjunction with the logic diagram to understand clearly
how the register can be used.

Which entry in the truth table in Fig. 9.12 accounts for the parallel entry of data?

Solution ~ The third entry from the top; clear is lngh, smﬁiloaﬂ is Iaw, clock mhibzt is low a posmvc ciock transition
oceiurs; and the serial data input is irrelevant.

" 5. 'What is the purpose of the shift/load line on the 74166‘? '
6. Is data smﬁed mto and out of a 74166 reglster on ciock P’I”s m on c[ock NTs‘?

. 9.5 PARALLEL IN-PARALLEL OUT . 2 1y Qﬂe,
Cle:

The fourth type of register discussed in the intro- ar

ductory section of this chapter is designed such that

data can be shifted either into or out of the register b > 5)
2

in parallel. In fact, simply adding an output line from o

each flip-flop in the 54/74166 discussed in the previ-
ous section would meet the parallel in—parallel out re- Clear
quirements. [It would, of course, require a larger dual | G
in-line package (DIP)—say, a 24-pin package.] 0, ©® o ol o,
The 54/74174 *
The 74174 in Fig. 9.13 is an example of a parallel _lew
in—parallel out register. The Texas Instruments data an (10)
sheet refers to it as a hex D-type flip-flop with clear. by— [b o—0,
It is simply a parallel arrangement of six D-type flip- 7P CK
flops. Each flip-flop is negative-edge-triggered, and Clear
thus a PT will shifi data into the register. The six data 7
bits, D) through Dy are all shifted into the register in P AR | 12 0
parallel. The stored data is immediately available, in ’ [i
parallel, at the outputs, Q) through Q. This type of oK
register is simply used to store data, and is sometimes Clear
called a data register, or data latch. Notice that it is 7
not possible to shift stored data either to the right or to bﬁ(14}) |(15) 04
the left. A low level at the clear input will immediately | K
reset all flip-flops low. The clear input is asynchro-
nous—that is, it can be done at any time and it takes Clear
precedence over all other inputs. — 7

The 74LS174 data sheet gives 54/74174

a setup time of 20 ns and a hold

Registers @

time of 5 ns. What is the minimum required width of the data input levels (D) ... Dg) for the
741.5174 in Fig. 9.137

Solution The data inputs must be steady at least 20 ns before the PT of the clock, and they must be held for a
minimum of 5 ns after the PT. Thiis, the data input levels must be held steady for a minimum of 25 ns (see Fig. 8.24

for comparison).

The 54/74198

The 54/74198 is an 8-bit TTL MSI having both parallel input and parallel output capability. The DIP pinout
for this device is given in Fig. 9.14 on the next page. It uses positive edge-triggered flip-flops, as indicated
by the small triangle at pin 11. Notice that a 24-pin package is required since 16 pins are needed just for the
input and output data lines. Not only does this chip satisfy the parallel input-output requirements; it can also
be used to shift data through the register in either direction—referred to as shiff right and shifi left. All the
registers previously discussed have the ability to shift right, that is, to shift data serially from the data input
flip-flop toward the right, or from a flip-flop Q4 toward flip-flop 0. We now need to consider how to shift

left.

Shift
left
serial Input I[nput Input Input
Vec s, input g b G ¢ F 9¢ g @p Clear
4] [23] |_| I_I 0] [1o] [1s| [17] [ig] [is] [1a [13]
| L rr [1 |
5 L H Oy G Ug F O E O
5 54/74198 Clear
|7 R 4 @ B @ ¢ @ D O L}\K
[[1T 7 I 1 1T 1 |
DT T2l T T o (o] [0 & o] ol] [2
S, Shift Input O, Input Qp Input O Input O, Clock GND

There are a number of 4-bit parallel in—parallel out shift registers available since they can be conveniently
packaged in a 16-pin DIP. An 8-bit register can be created by cither connecting two 4-bit registers in series
or by manufacturing the two 4-bit registers on a single chip and placing the chip in a 24-pin package (such as
the 54/74198). Let’s analyze a typical 4-bit register, say, a 54/7495A.

The data sheet for the 54/7495A describes it as a 4-bit parallel-access shift register. It also has serial data
input and can be used to shift data to the right (from Q4 toward (J5) and in the opposite direction—to the left.
The DIP pinout and logic diagram are given in Fig. 9.15. The basic flip-flop and control logic used here are
exactly the same as used in the 54/74164 as shown in Fig. 9.11c.

The parallel data outputs are simply the Q sides of each of the four flip-flops in the register. In fact, note
that the output Oy, could be used as a serial output when data is shifted from left to right through the register

(right shift}.

Digital Principles and Applications

Mode (6_)(2
coritrol
Serial (D)

Vee Q4

Outputs Clock 2
% LClock 1 L shift
Op O Op Rshift (load)

(4] [i3] [12]] [ig] [o] [s]

L 1 T]

b

input

Clock 1

right shift — |
Clock 2
left shift

% % 9 D k1 cxe
Serial input
A B o D Mode
| [T [T 1
L 2] 37 Ta] T5T Te T
Serial | 4 B C D Mode GND
input " ontrol
Inputs
{(a) Pinout
Data inputs
! B C D
[: [: (2)14) {3)(2) (H(3) (5)(5)
O %
R R R R
(8)(8) V Ld>cx ? ~SpCK wa V La>CcK
S QA SOy S Q(, hY QD
(13)(13) (12)(12) (110} (10)(;1
Note: The pin numbers in parentheses correspond to ‘QA s ~v e QD’
Outputs

the ("93A, "L895) ('L95), respectively.

(b) Logic diagram
54/7495A

When the mode control line is held high, the AND gate on the right input to each NOR gate is enabled
while the left AND gate is disabled. The data at inputs, 4, B, € and > will then be loaded into the register on
a negative transition of the clock—this is parallel data input.

When the mode control line is low, the AND gate on the right input to each NOR gate is disabled while
the left AND gate is enabled. The data input to flip-flop Q4 is now at serial input: the data input to Qg is Q4
and so on down the line. On each clock NT, a data bit is entered serially into the register at the first flip-flop
(4, and each stored data bit is shifted one flip-flop to the right (toward the last flip-flop Op,). This is the serial
input of data (at serial input), and also the right-shift operation.

Registers @

In order to effect a shift-left operation, the input data must be connected to the D data input as shown in
Fig, 9.16 below. It is also necessary to connect Oy to C, Q¢ to B, and (Jg to A as shown in Fig. 9.16. Now,
when the mode control line is held high, data bit will be entered into flip-flop Qp, and each stored data bit
will be shifted one flip-flop to the left on each clock NT. This is also serial input of data (but at input D) and
is the left-shift operation. Notice that the connections described here can either be hard wired or can be made
by means of logic gates.

Serial data input

{95, 'LS95) ("L95) Data inputs
{(6)(6 ! ?2)(14) ! (3)2) I ((‘:“‘)(3) "—(?)D
Mod) (5)
cor?tr(f):l -—--1>Do<>—<{>
Serial {1)(1) * t
input — Bl —
Clock 1 (U7
right shift — |
Clock 2 R R R R
lefishift — (g)(8) V Lok v LK v LCK v —>CK
5, S Up S Q¢ SO
{13)(13) (12)(12) (11)(10) (10(%)
Q_4 QB —e QC —e QD —
Outputs

m 54/7495A wired for shift left

There are two clock inputs—clock 1 and clock 2. This is to accommodate requirements where the clock
used to shift data to the right is separate from the clock used to shift data to the left. If such a requirement is
unnecessary, simply connect clock 1 and clock 2 together. The clock signal will then pass through the AND-
OR gate combination noninverted, and the flip-flops will respond to clock NTs.

Draw the waveforms you would expect if the 4-bit binary number 1010 were shifted into a
54/7495A in parallel.

Solution The mode control line must be high. The data input lines must be stabie for more than 10 ns prior to the
clock NTs (setup time for the data sheet information). A single clock NT will enter the data, (The waveforms are given
in Fig. 9.17.) If the clock is stopped after the transition time 7, the levels on the input data lines may be changed.
However, if the clock is not stopped, the input data line levels must be maintained.

At this point, it simply cannot be overemphasized that the input control lines to any shift register must be
controlled at all rimes! Remember, the register will do something every time there is a clock transition. What
it does is entirely dependent on the levels applied at the control inputs. If you do not account for input control
levels, you simply cannot account for the behavior of the register!

@ Digital Principles and Applications

Mode (l)
Clock (1) []
A (l) |
!
Bl !
0 : Mod
! Outputs ode
c 1 : selection
0 ' VCC QA QB QC QD Clock S] SO
bl i [e]_fis] 4] [13] [12] [i1] [re] [9]
0 |
N :
0)T 'f““—“—
[4
LR S
0y 1= I
C 1
0-mmmmes 1 L (2] [3] [[s] Lef 2] (8]
QDl """" 1 Clear Serial A4 B C D Serial GND
_______ + 0000000 input, ; input,
0 ! right toputs, left
Time T t shift shift

74194 pinout

=
h &

) SELE-TEST)

7. How can the 7495A, a 4-bit register, be used to store 8-bit numbers?.
8. Why does the 7495A have two separate clock inputs? '

. 9.6 UNIVERSAL SHIFT REGISTER .

In Section 9.1, we have seen that for basic types of shift register, the following operations are possible—serial
in—serial out, serial in—parallel out, parallel in—serial out, and paralle] in—parallel out. Serial in or serial out
again can be made possible by shifting data in any of the two directions, left shift (O, « Qg « Qr — Qp ¢«
Data in) and right shift (Data in — 04— Oy — ¢ — Op). A universal shift register can perform all the four
operations and is also bidirectional in nature. 7495A, described in previous section, is quite versatile except
for the fact that it is in-built for right shift; the left shift is achieved through parallel loading (Fig. 9.16) and
thus requires external wiring.

The 74194 is a 4-bit universal shift register in 16 pin package with pinout diagram as shown in Fig. 9.18.
A, B, C and D are four parallel inputs, and 04, O, Oc¢ and Qp, are corresponding parallel outputs. There are
two separate inputs for serial data for left and right shift. In addition, there are two mode control inputs which

Registers @

select the mode of operation for the universal shift register according to Table 9.1. The subscript # and r + 1
represent two consecutive states and in between them, there is a clock trigger. In the function table, next state
Q4, n+1 takes the value O ,, at clock-trigger which means whatever was the value of Oy at n-th state becomes
the value of (4 at (n + 1)-th state,

To understand how this universal shift register is implemented, refer to logic circuit diagram of 74194 in
Fig. 9.19. You may identify four 4 to | multiplexer blocks in the circuit (one is shown with dotted lines). Two
selection inputs of each of these four multiplexers, understandably, are mode selection inputs $,5y. For $,5;
= 00, the second AND gate output which is nothing but the previous value of the corresponding flip-flop is
transferred to the output. Thus, the flip-flop output does not change and this is the ‘Hold” mode. For $,5; =
01, the fourth AND gate output is transferred which corresponds to *Shift right’. For §;S; = 10, the first AND
gate output is transferred which corresponds to ‘Shift left’. Finally, for 5,5y = 11, the third AND gate output
is selected which effects parallel ‘Load’ synchronized with clock. The input ‘Clear’ is active low and resets
all the flip-flops asynchronously when activated. Note that the ‘Clock’ is positive edge-triggered due to two
inversions (bubble) in the circuit diagram.

The 74299 is an 8-bit universal shift register in 20 pin package with a similar function table as the 74194,
To save number of pins, the input and output pins are made common here. This is achieved by tristating and
using additional control input that make these pins bidirectional.

(@9 Table 9.1) Function Table of 74194

Mode Control - Function Next State (n+1-th state)
5 So . ' Qanti On+1 Qi Opn+i
0 } . 0 Hold o Oan Onn Ocn Op
0 - 1 ‘Shift right - Datain Qan Osn Qcn
R L (Pin2)
i 0 “Shiftleft ¢ O n Qcu Opn Data in
e S (PinT)
1 1 Loed -~ - 4 B C D

9.7 APPLICATIONS OF SHIFT REGISTERS |

Shift registers are used in almost every sphere of a digital logic system. In this section we discuss few such
applications. Shift register can be used to count number of pulses entering into a system as ring counter or
switched-tail counter. As ring counter it can generate various control signals in a sequential manner, Shift
register can also generate a prescribed sequence repetitively or detect a particular sequence from data input. It
can also help in reduction of hardware by converting parallel data feed to serial one. Serial adder is one such
application discussed in this section.

Ring Counter

Let’s begin with a simple serial shift register such as the 54/74164. One of the most logical applications of
feedback might be to connect the output of the last flip-flop Qp back to the D input of the first flip-flop 4
(Fig. 9.20a). Notice that the A and B data inputs are connected together. Now, suppose that all flip-flops are
reset and the clock is allowed to run. What will happen? The answer is, nothing will happen since the D
input to the first flip-flop is low (the input at 4 and B). Therefore, every time the clock goes high, the zero

@ Digital Principles and Applications

Clock (1) Dc
1
Clear — c{>c :
Serial input _{7) 515 . Al I Multiplexer
for left shift 10 } !
=N :
P L ‘ 12
© 5 s b oo,
b 9 n I S 7
: : Clear
13
(5) b © ()Qc
¢ { 11 —CK
Clear
1 01)
i/
1 10 }
L/
1 00
14
4 D 0 {)QB
g ° 1 11 —pCK
2 Clear
g !
5 (16 T
g s W 1 01)
8
9
3% > D D { 10)
= { 7/
1 00
15
y 3) D 0O {)QA
i 11 L CK
' Clear
- 2
ght shift I o1

74194, 4-bit universal shift register

in each flip-flop will be shifted into the next flip-fiop, while the zero in the last flip-flop /7 will travel around
the feedback loop and shift into the first flip-flop 4. In other words, all the flip-flops are in a reset state, each
clock PT resets them again, and each flip-flop output simply remains low. Consider the register as a tube full
of zeros (ping-pong balls) that shift round and round the register, moving ahead one flip-flop with each clock
PT.

Registers @

Q
N
o
t-..
b
Q
=)
=
e
o
o
=
&
=]
S
]
o
5
a

Q) Q
B)“[R QTR Qs TR O [R Qo[T |R Qe[[R e [& Q[[|R O
—or > L — —cr- »d o —op
S 0, A QBTS O T S Op T § QETS Op T s Q
oy g Oc Op O Or Qg Qq
{a) 54/74164 8-bit shift register with feedback ling from {0}, to A-B

!
Clock
1

i — y
s I
0c I

O 1 | 1

[
—e
)
£
[~ 1

O |

Op]

Q¢ 1

Oy 7 [1 L

(b) Waveforms when register has a single one, and seven zeros

Ring counter

In an effort to obtain some action, suppose that (4 is high and all other flip-flops are low, and then allow
the clock to run. On the very first clock PT, the 1 in 4 will shift into B and A4 will be reset, since the ¢ in /
will shift into 4. All other flip-flops will still contain s. The second clock pulse will shift the 1 from B to C,
while B resets. The third clock PT will shift the { from C to [, and so on. Thus this single 1 will shift down the
register, traveling from one flip-flop to the next flip-flop each time the clock goes high. When it reaches flip-
flop H, the next clock PT will shift it into flip-flop A by means of the feedback connection. Again, consider the
register as a tube full of ping-pong balls, seven “white” ones (0s) and one “black”™ one (a 1). The ping-pong
balls simply circulate around the register in a clockwise direction, moving ahead one flip-flop with each clock
PT. This configuration is frequently referred to as a circulating register or a ring counter. The waveforms
present in this ring counter are given in Fig. 9.20b.

Waveforms of this type are frequently used in the control section of a digital system. They are ideal for
controlling events that must occur in a strict time sequence—that is, event 4, then event B, then C, and so on.
For instance, the logic diagram in Fig. 9.21 shows how to generate RESET, READ, COMPLEMENT, and
WRITE (a fictitious set of control signals) as a set of control pulses that occur one after the other sequentially,
The control signals are simply the outputs of flip-fiips 4, B, D, and £ as shown in Fig, 9.20.

There is, however, a problem with such ring counters. In order to produce the waveforms shown in Fig.
9.20, the counter should have one, and only one, | in it. The chances of this occurring naturally when power
is first applied are very remote indeed. If the flip-flops should all happen to be in the reset state when power

@ Digital Principles and Applications

—— (QJRESET _ [
RESET !
READ (@READ L ']
] RE ' 1
Control logic COMPLEMENT g;;glll; (Op) COMPLEMENT :L : E !_!
[WRITE ©@oWRITE _L 11 1 [
['
Time —— S

is first applied, it will not work at all, as we saw previously, On the other hand, if some of the flip-flops come
up in the set state while the remainder come up in the reset state, a series of complex waveforms of some kind
will be the result. Therefore, it is necessary to preset the counter to the desired state before it can be used.
Example 9.10 shows one scheme how to do presetting when power is first applied.

Switched-Tail Counter or Johnson Counter

We have seen in ring counter what happens if non-inverting output of the first flip-flop is fed back to first flip-
flop of the shift register. If we instead feed inverting output back (or switch the tail) as shown in Fig. 9.22a for
a 4-bit shift register we get swirched tail counter, also known as twisted tail counter or Johnson counter. The

L1p ¢ D R D S D TH
—o > b
7] —L |_<7 R S T
CLK IJ D_ ¥
(a)
Clock { Serialin=T {Q R § T |Y=0'T"
0 1 0 ¢ ¢ 0 1
1 1 1 0 0 0 0
2 1 1 1.0 0 0
3 1 1 1 1 6 0
4 0 1 1 1 1 0
5 0 o 1 1 1 0
6 0 ¢ 0 1 1 0
7 0 0 0 0 1 0
8 1 0 0 0 0 1
9 1 1 6 0 0 0
repeats

(b)
(a) 4-bit switched tail counter, (b) Its state table

Registers @

circuit is explained through state table similar to Fig. 9.3 of Section 9.2. Assume all the flip-flops are cleared
in the beginning. Then all the flip-flop inputs have 0 except the first one, serial data in which is complement
of the last flip-flop, 1.e. 1. When clock trigger occurs flip-flop stores QRST as 1000. This makes 1100 at the
input of ORST when the next clock trigger comes and that gets transferred to output at NT. Proceeding this
we complete state table of Fig. 9.22b. Note that output ¥ = ()’ T"and state of the circuit repeats every eighth
clock cycle. Thus this 4-bit shift register circuit can count 8 clock pulses or called modulo-8 counter.

Followingabove logic and preparing state table forany N-bit shift register we see switched-tail configuration
can count up to 2N number of clock pulse and gives modulo-2N counter. The output ¥, derived similarly by
AND operation of first and last flip-flop inverting outputs gives a logic high at every 2N¥-th clock cycle.
This two-input AND gate which decodes states repeating in the memory units to generate output that signals
counting of a given number of clock pulses is called decoding gate. For switched-tail counter of any modulo
number we need only a 2-input AND gate. Observing the state sequences in Fig. 9.22b we find logic relation
like ¥ = QR or Y= RS’ or ¥ = 8T’, etc. can also be used for decoding purpose as they generate ¥ = | only
once during 2N clock cycles. Note that for ring counter we don’t need any decoding gate and clock pulse
count can directly be obtained from any one flip-flop output. We shall discuss other counter design techniques
in Chapter 10, which require less number of flip-flops for a particular modulo number. But, there decoding
complexity increases with increasing number of flip-flops. For example, a modulo-8 counter is possible to
design with log,8 = 3 number of flip-flops but we need a 3 input AND gate to decode the counter. Similarly,
modulo-16 counter requires 4 flip-flops and 4 input AND gate for decoding.

There is another important issue related with ring counter and switched tail counter. An n-bit register
has 27 different combination of states. But, the counter is to be initialized with one of the valid state of the
counting sequence on which the design is based. Otherwise, the counter will follow a completely different
state sequence (mutually exclusive) and decoding will not be proper. Solve Problem 9.25 to get an idea
on what happens if circuit in Fig. 9.22a is initialized with a word outside the state sequence appearing in
Fig. 9.22b.

Sequence Generator and Sequence Detector

Sequence generator is useful in generating a sequence pattern repetitively. It may be the synchronizing bit
pattern sent by a digital data transmitter or it may be a control word directing repetitive control task. Sequence
detector checks binary data stream and generates a signal when a particular sequence is detected.

Figure 9.23a gives the basic block diagram of a sequence generator where shift register is presented as
pipe full of data and each flip-flop represents one compartinent of it. The leftmost flip-flop is connected to
serial data in and rightmost provides serial data out. The clock is implied and data transfer takes place only
when a clock trigger arrives. Note that the shift register is connected like a ring counter and with triggering
of clock the binary word stored in the clock comes out sequentially from serial out but does not get lost as it
is fed back as serial in to fill the register all over again. Sequence generated for binary word 1011 is shown in
the figure and for any n-bit long sequence to be generated for this configuration we need to store the sequence
in an n-bit shift register.

The circuit that can detect a 4-bit binary sequence is shown in Fig. 9.23b. It has one register to store the
binary word we want to detect from the data stream. Input data stream enters a shift register as serial data
in and leaves as serial out. At every clocking instant, bit-wise comparisons of these two registers are done
through Ex-NOR gate as shown in the figure. Two input Ex-NOR gives logic high when both inputs are low
or both of them are high, i.e. when both are equal. The final output is taken from a four input AND gate,
which becomes 1 only when all its inputs are 1, i.e. all the bits are matched. Figure 9.23b shows a situation

@ Digital Principles and Applications

(@)

|

1
Sernial data in —— 0 1 1

AL
L

—

1 0 1 1

Sequence to be detected

(b}
(@9 Fig. 9.23) (a) 4-bit sequence generator, (b} 4-bit programmable sequence detector

when data received so far is 0111 and word to be matched is 1011. The first two bits are mismatched and
corresponding Ex-NOR outputs are low, so also final output ¥. Now, as the next bit in the serial data stream is
1 when a clock trigger comes the first flip-flop of the shift-register stores 1 and 011 gets shifted to 2nd to 3rd
flip-flops. With this both registers store 1011 and the first flip-flop of the shift-register stores 1 and 011 gets
shifted to 2nd to 3rd flip-flops and ¥ = | completing sequence detection.

Note that Fig. 9.23b can be used as a programmable sequence detector, i.e. if we want to change the binary
word to be detected we simply load that in the bottom register. For a fixed sequence detector, we can reduce
hardware cost by removing bottom register and directly connect Ex-NOR input to +¥¢¢ or GND depending
on whether we need a | or a 0 to be detected in a particular position.

Serial Adder

The addition operation and full adder (FA) circuit is discussed in detail in Chapter 6. We have seen for 8-bit
addition we need 8 FA units (Fig. 6.6). There the addition is done in parallel. Using shift register we can
convert this parallel addition to serial one and reduce number of FA units to only one. The benefit of this
technique is more pronounced if the hardware unit that’s needed to be used in parallel is very costly. Figure
9.24 shows how serial addition takes place in a time-multiplexed manner and also provides a snapshot of the
register values at 3rd clock cycle.

Two 8-bit numbers, to be added (4745...4, 4, and B, Bg...B| B,) are loaded in two 8-bit shift registers A
and B. The LSB of each number appears in the rightmost position in two registers. Serial data out of 4 and B
are fed to data inputs of full adder. The carry-in is fed from its own carry output delayed by one clock period

Registers @

SZ
Serial out Full adder
Seria]in———«bsl So | A7 | Ag | As | As | Ay | Ay —LA}_A S, S,
i i
B
i.ip

Serial in g Q D
B, | By | Bs | By | By | B,

> Serial out] i

(@9 Fig. 9.24) Serial addition of two 8-bit numbers (Register values shown are at 3rd
clock cycle)

CLK

by a D flip-flop, which is initially cleared. Both registers and D flip-flop are triggered by same clock. The sum
{S) output of FA is fed to serial data in of Shift Register 4.

The serial addition takes place like this. The LSBs of two numbers (4, and Bp) appearing at serial out
of respective registers are added by FA during 1st clock cycle and generate sum (Sy) and carry (Cp). Sy is
available at serial data input of register 4 and Cy at input of D flip-flop. At NT of clock shift registers shift
its content to right by one unit. Sy becomes MSB of 4 and Cy, appears at D flip-flop output. Therefore in the
second clock cycle FA is fed by second bit (4, and B)) of two numbers and previous carry (Cg). In second
clock cycle, S| and Cj are generated and made available at serial data in of A register and input of D flip-flop
respectively. At NT of clock §; becomes MSB of 4 and S5 occupies next position. 4; and B, now appear
at FA data input and carry input is). In 3rd clock cycle, S; and C, are generated and they get transferred
similarly to register and flip-flop. This process goes on and is stopped by inhibiting the clock after 8 clock
cycles. At that time shift register A stores the sum bits, 57 in leftmost (MSB) position and S, in rightmost
{LSB) position. The final carry is available at D flip-flop output.

The limitation of this scheme is that the final addition result is delayed by eight clock cycles. In parallel
adder the result is obtained almost instantaneously, after nanosecond order propagation delay of combinato-
rial circuit. However, using a high frequency clock the delay factor can be reduced considerably.

The register in Fig. 9.20 can easily be cleared to all Os by using the clear input. Show one
method for setting a single 1 and the remaining 0Os in the register.

Solution The simple power-onsreset. circuit in Fig. 9.25a on the next page is widely used to generate the equivalent
of a-narrow negative pulse that eccurs when power (+¥gc) is first applied to-the system. Before the application of
power, the voltage across the capacitor is zero. When + V¢ is applied, the capacitor voltage charges toward +Vec
with an RC time constant, and then remains at + ¥ as long as the system power remains, as seen by the waveform
in the figoré. If point A'is then connected to the ¢lear input of the 54/74164, all flip-fiops will-antomatically be reset
o 0s when + Ve is first applied. :

@ Digital Principles and Applications
e

R
+ VC _——
To CLEAR
0
C
Power I
ON =
{a) Power-on-reset circuit
From Power-on-reset above
o [o __ Ix
R -
Lop> S Lo o>

—s
s
—
02—
£

_\
(b}

54/74164 with logic to preset a single 1 and seven 0s

The logic added in the feedback path in Fig. 9.25b will now cause a single I to be set into the register. Here’s how

it works:
I The power-on-reset pulse is inverted and used to initially set flip-flop X. This causes the output of the OR gate

to be a |, and the first clock PT will shift this 1 into Q4.
When (4 goes high, this will reset flip-flop X. At this point, the register contains a | in 0,4, and 0’s in all other

2.
flip-flops. X will remain low as long as power is applied, and the data from Qf will pass through the OR gate
directly to the data input 48. The single 1 and the seven 0s will now shift around the register, advancing one

position with each clock transition as desired.
Since the ring counter in Fig. 9.20 can function with more than a single 1 in it, it might be desirable
to operate in this fashion at some time or other. It can, for example, be used to generate a more complex
control waveform. Suppose, for instance, that the waveform shown in Fig. 9.26 were needed. This waveform

Registers @
could ea§ily pe generatt_ad by si.mply presetting the Clock [] H [[] I I I l
counter in Fig. 9.20 witha 1l in 4, a | in C, and e
all the other flip-flops reset. Notice that it is really Control — —
immaterial where the two 1s are set initially. It is waveform M

desired
necessary only to ensure that they are spaced one
flip-flop apart.

(@9 Example 9.11) How would you preset the ring counter in Fig. 9.20 to obtain a square-wave output which is
one-half the frequency of the clock? How about one-fourth the clock frequency?

Solution It is necessary only to preset a 1 in every other flip-flop, while the remaining flip-flops are all reset. This
will generate a waveform at each flip flop output that is high for one clock period and then low for one clock period.
The petiod of the output waveform is then two clock periods; therefore, the frequency is one-half the clock frequency.
An output signal at one-fourth the clock frequency can be generated by presetting the shift register with two 1s, then

two Os, then two 1s, and then two 0s. -

9. What is a ring counter?
10. What is a power-on-reset circuit used for?
11. What is a switched tail counter?-
- 12. How does a serial adder work?

9.8 REGISTER IMPLEMENTATION IN HDL

In this section, we see how to describe a register using HDL. The parallel in parallel out register, primarily
used for storage purpose is described for IC 741174 (Fig. 9.15) in Verilog code in the first column. We use
vector notation for convenience. When Clear is activated (active LOWY} all 6 outputs of are reset.

In second column, we show code for shift right register shown in Fig. 9.5 where T is the final output and {0,
R, § are internal outputs. Since they are outputs of always block they have to be defined as reg and not wire.
Note that, we use a new assignment operator <= within always block which unlike = operator executes all
associated statements concurtently. If we had used = instead of <=, the D input through sequential execution
would have reached final output in one clock cycle {unlike 4 clock cycles required in 4-bit shift register), also
all the flip-flops within the register will have same value that of serial data input. Often, use of = operator
is called blocking mode operation and use of <=is called non blocking mode. In column 3, we show a 4-bit
serial in parallel out right shift register where all the flip-flop outputs are available externally. We use vector
notation for convenience wherever possible,

module Reg74174(D,Clock, module SR_Z {(D,Clock,T);) module SR2(D,Clock,Q);

Clear,Q); : input Clock,D; // Use input Clock,D; //Clear as
imput Clock, Clear; . output T; // Clear as in output [3:0] Q; //in 74174
input [5:0] D; reg T; // LHS to reg ' [3:0] Q;

output [5:0] Q; - initialize //to lnitialize
reg [5:07 Q; ' reg Q,R,S; //internal :

@ Digital Principles and Applications

always @ (negedge Clock always @ (negedge Clock) always @ (negedge

or negedge Clear) Clock)
if (~Clear}) Q=6"b0; begin begin
//Q stores 6 binary 0 Q <= D; G[0] <= .D;
aelse Q=D; R <= Q; Q1] <= Qf0};
endmodule S <= R; Q2] <= Q[1];
T <= §; 01{3] <= Q1{21;
end end oo

endmodule endmodule

Solution The code is similar to Shift Register description given above in second colurmn. The serial data input here
is taken from inverse of final flip-flop output. Output is generated from decoding logic ¥= Q' T".

module STC(Clock,Clear,Y); //Switched Tail Counter
input Clock, Clear;

output Y; -

req O,R,S,T; //internal outputs of flip-flops
assign Y= {(~Q)&{~T};

always @ (negedge Clock)

begin _ _
if (~Clear) Q=¢'b0; //0 sto}_‘es & binary G - .
else T
begin L]
Q <= ~T; //Tail is switched and connected to input
R <= Q; '
5 <= R;
T <= 3;
end
endmodule

Design an 8-bit sequence generator that generates the sequence 11000100 repetitively using
shift register.

Solution We use ring counter and switched-tail counter derived from shift registers for this purpose,

in Method-1, we load an 8-bit ring counter as shown in Fig. 9.27a with the given sequence and at
the output, the sequence will be repetitively generated.

In Method-2, we consider a modulo-8 switched-tail counter developed from 4-bit shift register.
Let it be initially loaded with 0000. Then the 8 repetitive states of the counter will be as shown in Fig.

Registers @

9.27b and is reproduced in Fig. 9.27¢c. We then design a combinatorial circuit which for each of the
state generates one bit of the sequence. The Karnaugh Map for this is shown in Fig. 9.27d. Note that the
unused states can be considered as ‘don’t care’. The logic equation of the combinatorial circuit realized

as Fig. 9.27b can be written as Y= A4’D" + A’B + AR’
L 0 0 0 0 —|

4 g 1C |D

: Combinatorial
L{1j1|0|0]0l1|0|0%&put,y Cireuit . | Output, ¥
- (@ ' ' (b)

Counter Sequence Generator

ABCD Output, ¥

1200 i ABCD__?Q o u 1

1.1 0.0 S0 00] 1y 010 IX+— gD
EEER ot [T [0

01 11 1 nlolx|ofo

0001 o o TR 4

0000 - ..Iepeats... Y= 4D + 4B+ AB

(©) ; (d)

(a) Solution with Method-1, (b)-(d) Solution with Method-2, (b) Targeted
realization, (¢} Counter sequence vs. sequence generator output, (d)
Karnaugh Map to generate logic equation

Note that Method-2 can be used with any other types of counter and is not restricted to shift register
based counter. This is shown with Example 10.15 in next Chapter.

Shift registers are important digital building blocks that can be used to store binary data. They can accept
data bits in either a serial or a parallet format and can, likewise, deliver data in either serial or parallel.
There are thus four basic register types: serial input-serial output, serial input-parallel output, parallel
input-serial output, and paraliel input-parallel output.

In one application, a register can be used to change data from a serial format into a parallel format, or vice
versa. As such, shiff registers canbe regarded as data format changers. The UART is a good example of a data
changer. There are a great many other shift register applications —arithmetic operations, logic operations,

@

Digital Principles and Applications

and counters, to name only a few. Our intent has not been to discuss all the possible applications of shift
registers, but rather to consider in detail how each type of register functions: With this knowledge, one can
then discover the many and varied practical applications in existing digital designs. :

Johnson counter Refer to switched-tail
counter.

parallel shift Data bits are shifted simultane-
ously with a single clock transition.

register capacity Determined by the number
of flip-flops in the register. There must be
one flip-flop for each binary bit; the register
capacity is 2", where » is the number of flip-
flops.

ring counter A basic shift register with direct
feedback such that the contents of the register
simply circulate around the register when the
clock is running.

serial shift Data bits are shifted one after the
other in a serial fashion with one bit shifted
at each clock fransition. Therefore, n clock

transitions are needed to shift an »-bit binary
number.

sequence detector Detects a binary word from
input data stream.

sequence generator Generates a binary data
sequence.

serial adder Converts parallel data to serial
and use adder block sequentially.

switched tail counter Shift register with
inverting output of last flip-flop fed to first
flip-flop input. For #-bit shift register can give
modulo 2N counter.

shift register A group of flip-flops connected
in such a way that a binary number can be
shifted into or out of the flip-flops.

UART Universal asynchronous receiver-
transmitter.

@_CROBLEMS |)

9.1

92

5.3

Determine the number of flip-flops needed to
construct a shift register capable of storing:

a. A 6-bit binary number

b. Decimal numbers up to 32

¢. Hexadecimal numbers up to F

A shift register has eight flip-flops. What

is the largest binary number that can be
stored in it? Decimal number? Hexadecimal
number?

Name the four basic types of shift registers,
and draw a block diagram for each.

9.6

9.7

9.8

Draw the waveforms to shift the binary
number 1010 into the register in Fig. 9.2.
Draw the waveforms to shift the binary
number 1001 into the register in Fig. 9.3.

The register in Fig. 9.2 has 0100 stored in it.
Draw the waveforms for four clock transitions,
assuming that both J and X are low.

Draw the waveforms showing how the decimal
number 68 is shifted into the 54/74LS91 in
Fig. 9.5. Show eight clock periods.

The hexadecimal number AB is stored in
the 54/74L891 in Fig. 9.5. Show the

Ragisters

9.10

9.11

9.12

9.13

9.14

9.15

9.16

9.17

waveforms at the output, assuming that the
clock is allowed to run for eight cycles and
that A =8=0.

How long will it take to shift an 8-bit binary
number into the 54/74164 in Fig. 9.7 if the
clock is:

a. 1 MHz b. 5 MHz

For the 54/74164 in Fig. 9.7, B is high,
clear is high, a 1-MHz clock is used to shift
the decimal number 200 into the register
at 4. Draw all the waveforms (such as in
Fig. 9.9).

On the basis of information in Example
9.5, what is the maximum frequency of the
clock if the minimum data transition time is
30 ns?

In Fig. 9.9, if control is taken low at time X,
will the data stored in the register remain even
if the clock is allowed to run? Explain.

For the circuit in Fig. 9.11c, write the logic
levels on each gate leg, given:

a. Control =1, X1 =0,X3=1

b. Control=0,X,=0,X,=1
Redraw the 54/74166 in Fig. 9.10 showing
only those gates used to shift data into the
register in parallel. If a gate is disabled, don’t
draw it.
Redraw the 54/74166 in Fig. 9.10 showing
only those gates used to shift data into the
register in serial. If a gate is disabled, don’t
draw it.
Explain the operation of the 54/741 66 for each
of the six truth table entries in Fig. 9.12.
Draw all the input and output waveforms for
the 54/74166 in Fig. 9.10, assuming that the
decimal number 190 is shifted into the register

9.18

9.19

5.20

9.21

9.22

9.23

9.24

9.25

9.26

9.16.)

in:
b. Serial

a. Parallel

Redraw the 54/7495A shift register in Fig.
9.15 showing only those gates used to shift
data into the register in parallel. If a gate is
disabled, don’t draw it.

Repeat Prob. 9.18, assuming that the data is
shifted in serially.

Draw the waveforms necessary to enter, and
shift to the right a single 1 through the shift
register in Fig. 9.15.

Repeat Prob. 9.20, but do a left shifi. (See Fig.

Draw the waveforms that would result if the
circulating register (ring counter) in Fig. 9.20
had alternate 1s and Os stored in it and a -
MHz clock were applied.

The register in Fig. 9.20 can easily be cleared
to all Os by using the clear input. See if you
can design logic circuitry to set the register
with alternating 1s and 0s.

Explain the operation of the 354/74165
shift register. Redraw one of the eight flip
flops along with its two NAND gates, and
analyze:

a. Parallel data entry

b. Shift right

c. Serial data entry
The logic diagram is given in Fig. 9.28 on the
next page.
Show how modulo-8 switched tail counter works
if is initialized with ‘1001°. How to decode this
counter?
Show the circuit diagram for an 8-bit sequence
detector which has to detect a fixed pattern
‘10011110’ from incoming binary data stream.

@ Digital Principles and Applications

Parallel
inputs
" A B C D E F G H
(1) (12) (13 (14) (3) 4) (5) 6)
J U U U U U U u
' S S %8 5 S 5 51|® 5
1S 15 18 18 18 15 1S 18
SER (—|10) o r{> b ol N gl T g T PRl R R R SN gH
" R R RI[F1°R H

SH/ALD (—12»—4>—<r

Clock ()4 — — — il — hd
(15)
CLKINH

Pin numbers shown are for ./ and & packages.

5
I
DA

(a) Logic diagram (positive logic)

Clock
CLKINH |
. .
SER E
SHAD i
=
4 :HI :
B ;L 4
c__ [iql :
D 'L)
! H
Data < E m :
: !
F i L :
H i
G v !
+ H 5
LH ‘H :
s :
Qu] vn wHlL L Hl Ll L] H]
- R]
Oy 7] C L L[HLLTH|LLHLL]
|+— Inhibit Serial shift |
Load

(b) Typical shift, load, and inhibit sequences

54/74165, 8-bit shift register

Registers

- LABORATORY EXPERIMENT

AIM: - The aim of this experiment is to study
Shift Register and use it to’' get Ring Counter
and Johnson Counter, '

Theory: The shift register is a special kind
of register, i.e. group of memory units where
binary data can be shifted from one unit to

Outputs

another in & sequential manner, The loading of
shift register may be done serially or parallely.
In serial loading as many number of clock
cycles are required as the size of the register to
load it fully. In paraliel loading, all the memory
units are loaded simultaneously in one clock
cycle. The data within the register can be

Clock 2
Clock 1 L shift

04y Op

VCC

Ip Rshift (load)

III_II_II_II_II_I

[[4 |
QA QB % 9 cx1 k2
Serial input 749 5
A B c D Mode
I N I I
[T2 3] [af [[ef Lol
Serial A B C D Mode GND
input Tnputs control
Serial data input
(95, 'LS95) ('L95) Data inputs
6 T @09 Tow tao o
Mode (6}6)
control _"'l>°0_c{>
Serial (D)
Input
Clock 1 (9)(7)
right shift ™ |
Clock2 R R R R
left shift — (8)(8) VWCK V—»cx V-»CK V—»CK
s Oy s Op s O sQ@h
(13)(13) (12)(12) (11)(10} (103(9)
y Op—e O-—se Op
Outputs

@ Digital Principles and Applications

‘thﬁawwﬁwngseqmcevmesmdxﬁ&em.

& ') o initializations and comment on the modulo
-Work element: [C 7495.is:a 4-bit shit =~ number of the counter.

register with a mode control.that allows o .

Do 9 ‘A ‘ditect-feedback ' shift register—the
R .;zcemenﬁsofthcregisterczrculm:armdthe :
B 3 &‘ 2t

% .#‘P.'N -

"’eime:smmgmﬁeidaamw
Pls

'r~i - N

’Two?masscomectedmsmeswsustore':?”: _ regis .
/8 bit numbers. P .eonﬁgurauancangwemoduioZNcounm. :
L8 mmm sapmte clock mputs © 12, Serial adder converts parallel data to serial
" accommodste - separate shxft-nght and;:.._.f .':%'...mgsmﬁregmmmm -
[Silm*leﬂﬁgﬂafs [RR _ b -=.sequmtmilya&snga&ad&rbbck

e o

Counters

Describe the basic construction and operation of an asynchronous counter
Determine the logic circuit needed to decode a given state from the output of a given
counter

Describe the synchronous counter and its advantages

See how the modulus of a counter can be reduced by skipping one or more of its
natural counts

Understand how to design counter as a finite state machine

++ 4+

+

A counter is probably one of the most useful and versatile subsystems in a digital system. A counter driven
by a clock can be used to count the number of clock cycles. Since the clock pulses occur at known intervals,
the counter can be used as an instrument for measuring time and therefore period or frequency. There are
basically two different types of counters—synchronous and asynchronous.

The ripple counter is simple and straightforward in operation and its construction usually requires a
minimum of hardware. It does, however, have a speed limitation. Each flip-flop is triggered by the previous
flip-flop, and thus the counter has a cumulative settling time. Counters such as these are called serial, or
asynchronous.

An increase in speed of operation can be achieved by use of a parallel or synchronous counter. Here, every
flip-flop is triggered by the clock (in synchronism), and thus settling time is simply equal to the delay time of
a single flip-flop. The increase in speed is usually obtained at the price of increased hardware.

Serial and paralle! counters are used in combination to compromise between speed of operation and
hardware count. Serial, parallel, or combination counters can be designed such that each clock transition
advances the contents of the counter by one; it is then operating in a count-up mode. The opposite is also

@ Diyital Principies and Applications

possible; the counter then operates in the count-down mode. Furthermore, many counters can be either
“cleared” so that every flip-flop contains a zero, or preset such that the contents of the flip-flops represent any
desired binary number.

Now, let’s take a look at some of the technigques used to construct counters.

. 10.1 ASYNCHRONOUS C_OUN__TERS:'

Ripple Counters

A binary ripple counter can be constructed using clocked JK flip-flops. Figure 10.1 shows three negative-
edge-triggered, JK flip-flops connected in cascade. The system clock, a square wave, drives flip-flop 4. The
output of A drives B, and the output of B drives flip-flop C. All the / and K inputs are tied to +¥¢¢. This means
that each flip-flop will change state (toggle) with a negative transition at its clock input.

e
Negative State
T 7 4 1/ B s C clock or
Clock — % > S transitions| C B A | count
—K A4 —K B — K C L 0 0 0 0
A B C, a ¢ 0 1 1
Ou;{puts b 0 1 0 2
(a) Three-bit binary ripple counter c o 1 1 3
Time b ¢ d e [g8 h i d I o 0 4
RN e |1 0 1| 5
Clock I 11 o 6
A_ {10 I LI L < L1 1l o
s 1 — r —
{b) Waveforms (c) Truth table

When the output of a flip-flop is used as the clock input for the next flip-flop, we call the counter a ripple
counter, ot asynchronous counter. The A flip-flop must change state before it can trigger the B flip-flop, and
the B flip-flop has to change state before it can trigger the C flip-flop. The triggers move through the flip-flops
like a ripple in water. Because of this, the overall propagation delay time is the sum of the individual delays.
For instance, if each flip-flop in this three-flip-flop counter has a propagation delay time of 10 ns, the overall
propagation delay time for the counter is 30 ns.

The waveforms given in Fig. 10.1b show the action of the counter as the clock runs. Let’s assume that the
flip-flops are all initially reset to produce 0 outputs. 1f we consider 4 to be the least-significant bit (LSB} and
C the most-significant bit (MSB), we can say the contents of the counter is CB4 = 000.

Every time there is a clock NT, flip-flop 4 will change state. This is indicated by the small arrows) on
the time line. Thus at point a on the time line, 4 goes high, at point b it goes back low, at ¢ it goes back high,
and so on. Notice that the waveform at the output of flip-flop 4 is one-half the clock frequency.

Counlers @

Since A acts as the clock for B, each time the waveform at 4 goes low, flip-flop B will toggle. Thus at point
b on the time line, B goes high,; it then goes low at point d and toggles back high again at point £ Notice that
the waveform at the output of flip-flop B is one-half the frequency of 4 and one-fourth the clock frequency.

Since B acts as the clock for C, each time the waveform at B goes low, flip-flop C will toggle. Thus C goes
high at point & on the time line and goes back low again at point 4. The frequency of the waveform at C is
one-half that at B, but it is only one-eighth the clock frequency.

What is the clock frequency in Fig. 10.1 if the period of the waveform at C is 24 |s?

Solution Since there are eight clock eycles in one eycle of C, the period of the clock must be 24/8 =3 us. The clock
frequency must then be 1/(3 x 107%) = 333 kiz.

Notice that the output condition of the flip-flops is a binary number equivalent to the number of clock
NTs that have occurred. Prior to point @ on the time line the output condition is CBA = 000. At point a on the
time line the output condition changes to CBA = 001, at point 5 it changes to CBA =010, and so on. In fact, a
careful examination of the waveforms will reveal that the counter content advances one count with each clock
NT in a “straight binary progression™ that is summarized in the truth table in Fig. 10.1c.

Because each output condition shown in the truth table is the binary equivalent of the number of clock
NTs, the three cascaded flip-flops in Fig. 10.1 comprise a 3-bit binary ripple counter. This counter can be
used to count the number of clock transitions up to a maximum of seven. The counter begins at count 000 and
advances one count for each clock transition until it reaches count 111. At this point it resets back to 000 and
begins the count cycle all over again. We can say that this ripple counter is operating in a count-up mode.

Since a binary ripple counter counts in a straight binary sequence, it is easy to see that a counter having
n flip-flops will have 2 output conditions. For instance, the three-flip-flop counter just discussed has 2 = 8
output conditions (000 through 111). Five flip-flops would have 2° = 32 output conditions (00000 through
11111), and so on. The largest binary number that can be represented by » cascaded flip-flops has a decimal
equivalent of 2" — 1. For example, the three-flip-flop counter reaches a maximum decimal number of 2* — 1.
The maximum decimal number for five flip-flops is 2% — 1 = 31, while six flip-flops have a maximum count
of 63.

A three-flip-flop counter is often referred to as a meodulus-8 (or mod-8) counter since it has eight states.
Similarly, a four-flip-flop counter is a mod-16 counter, and a six-flip-flop counter is a mod-64 counter. The
modulus of a counter is the total number of states through which the counter can progress.

How many flip-flops are required to construct a mod-128 counter? A mod-32?7 What is the
largest decimal number that can be stored in a mod-64 counter?

“Solution ~A'tnod-128 counter must have seven flip-flops, since 27 = 128, Five flip-flops are needed to construct a
“1nod=32 counter. ‘Fhe largest detimal number that can be stored in‘a six-flip-flop counter (mod-64) is 111111 = 63.
Note carefully the difference between the modulus (total number of states) and the maximum decimal number,

The 54/7493A

The logic diagram, DIP pinout, and truth table for a 54/7493A are given in Fig. 10.2. This TTL MSI circuit is
a 4-bit binary counter that can be used in either a mod-8 or a mod-16 configuration. If the clock is applied at
input CKB, the outputs will appear at Og, O¢. and Op, and this is a mod-8 binary ripple counter exactly like
that in Fig. 10.1. In this case, flip-flop 0, is simply unused.

@ Digital Principles and Applications

193 (top view)
CKA Oy 9p GND O Q¢
14113 121 11 {109 8
1 1
gy Op Op
(‘93A) F'L93] 7493A Oc
(12) B R
(14) J or——a, o) Koy
CKA @€ CK i [
F'e W23 45 16 17
g CKB Ry, Ryzy NC Foe NC NC
{9 Positive logic: see function tables
(1) J @ Og NC — No internal connection
CkB P K (b) DIP pinout
K
‘L93A, "L93, '1.S93 Count
‘;—_T sequence
(8) Count Output
J 0 Oc Op Oc Op Oy
CK 0 L L L L
K 1 L L L H
2 L L H L
F O | 3|2 L #H
4 L H L L
(11} 5 L H L H
\ J 2 9 6 | L HHIL
7 L H HH
@ I'e 8 H L L L
R 9 H L L H
P }J 0 | B L H L
0D T3y (3) 11 H L HH
12 H H L L
13 H H L H
14 H H H L
15 H H H H
(a) Logic diagram (c) Truth table

7493A

On the other hand, if the clock is applied at input CKA4 and flip-flop O, is connected to input CKB, we
have a mod-16, 4-bit bmary ripple counter. The outputs are 04, Op, Oc, and Qp. The proper truth table for
this connection is given in Fig, 10.2c.

All the flip-flops in the 7493 A have direct reset inputs that are active low. Thus a high level at both reset
inputs of the NAND gate, R1y and Ry2), is needed to reset all flip-flops simultaneously. Notice that this reset
operation will occur without regard to the clock.

€ LU

Solution The comect waveforms are shown in Fig. 10.3. %emmmofﬁweomrmMatpomaonmém
W,W‘nheachnemwclockmmon,thecounwrmndvancedbyommulmemmmeraunuutpomt

Draw the correct output waveforms for a 7493A connected as a mod-16 counter.

Counters @

Tlme; ~T
Q4 [1 !_1][! I b1 LI i
oo ! L

' lm:u .' Waveforms for a mod-lﬁ, 7493A

An interesting and useful variation of the 3-bit ripple counter in Flg 10.1 is shown in Fig, 10.4. The
system clock is still used at the clock input to flip-flop 4, but the complement of 4, A, is used to drive flip-
flop B, likewise; B is used to drive flip-flop C. Take a look at the resulting waveforms.

t¥ec *
JLIL ¢/ 4 J B J C Comt| € B 4
Clock — % B _
L K B K T Topr b
6 1 1 0
A B C 5 1 0 1
@) _4qr o0
3 0 1 1
Tme a b c d e f g b I 2 0 1 0
i
Comt ¥ 4+ ¥ 4 + & v ¥ 1 {0 0 |
selinligingipiginipinliy 0 o 00
A | R N N 7 1 1 1
: S A SR N B
c_ 1 I
(c)

A down counter

Flip-flop A simply toggles with each negative clock transition as before. But flip-flop B will toggle each
time 4 goes high! Notice that each time A goes high, A goes low, and it is this negative transition on A that
triggers B. On the time line, B toggles at points a, ¢, e, g and i.

Similarly, flip-flop C is triggered by B and so C will toggle each time B goes high. Thus C toggles high at
point @ on the time line, toggles back low at point e and goes back high again at point i.

The counter contents become ABC = 111 at point @ on the time line, change to 110 at point 5, and change to
101 at point c. Notice that the counter contents are reduced by one count with each clock transition! In other
words, the counter is operating in a count-down mode, The results are summarized in the truth table in Fig.
10.4¢. This is still 2 mod-8 counter, since it has eight discrete states, but it is connected as a down counter.

@ Digital Principles and Applications

A 3-bit asynchronous up-down counter that counts in a straight binary sequence is shown in
Fig. 10.5. It is simply a combination of the two counters discussed previously. For this counter to progress
through a count-up sequence, it is necessary to trigger each flip-flop with the true side of the previous flip-flop
(as opposed to the complement side). If the count-down control line is low and the count-up control line high,
this will be the case, and the counter will have count-up waveforms such as those shown in Fig. 10.1.

A B C

Count-up lIT: lll:
J LI J 4 J B c

lock ™ %
Cloc X

|
=V <
al

b
K

|

=

Note: The J and K inputs are all tied to + ¥
The counter outputs are 4, B, and C,

Count-down d

3-bit binary up-down counter

On the other hand, if count-down is high and count-up is low, each flip-flop will be triggered from the
complement side of the previous flip-flop. The counter will then be in a count-down mode and will progress
through the waveforms as shown in Fig. 10.4.

This process can be continued to other flip-flops down the line to form an up-down counter of larger
moduli. It should be noticed, however, that the gates introduce additional delays that must be taken into ac-
count when determining the maximum rate at which the counter can operate.

1. What is the largest binary number representablé by a mod-6 ripple counter?
2. How many flip-flops are required to construct a mod-1024 ripple counter?

. 10.2 DECODING GATES .

A decoding gate can be connected to the outputs of a counter in such a way that the output of the gate will
be high (or low) only when the counter contents are equal to a given state. For instance, the decoding gate
connected to the 3-bit ripple counter in Fig. 10.6a will decode state 7 (CBA = 111). Thus the gate output will
be high only when 4 =1, B =1, and C = 1 and the waveform appearing at the output of the gate is labeled
7. The Boolean expression for this gate can be written 7 = CBA. A comparison with the truth table for this
counter (in Fig. 10.1) will reveal that the condition CBA = 111 is true only for state 7.

The other seven states of the counter can be decoded in a similar fashion. It is only necessary to examine
the truth table for the counter and then the proper Boolean expression for each gate can be written. For
instance, to decode state 5, the truth table reveals that CBA = 101 is the unique state. For the gate output to
be high during this time, we must use C, B, and 4 at the gate inputs. Notice carefully that if B =0, then B
= 1! The correct Boolean expression is then 5 = C B4, and the desired gate is that given in Fig. 10.6¢c. The

waveform is again that given in Fig. 10.6b and is labeled 5.

Counters @

gL J A4 J B J C
Clock —————d> >
K 4 K B K C

(a) Decoding gate for state 7

Clock
A__ 1T 1 j
B ! A
S s e S I B S I 52} .
7 ' L
5

{c) Gate to decode state 5

All eight gates necessary to decode the eight states of the 3-bit counter in Fig. 10.1 are shown in Fig. 10.7a.
The gate outputs are shown in Fig. 10.7b. These decoded waveforms are a series of positive pulses that occur
in a strict time sequence and are very useful as control signals throughout a digital system. If we consider
state 0 as the first event, then state 1 will be the second, state 2 the third, and so on, up to state 7. Clearly the
counter is counting upward in decimal notation from 0 to 7 and then beginning over again at 0.

.
.
.

o]--ENRell--N]

4 -

.

) o Oyt i

.

O Ol

.

Oy Dol Oyt

(a) Gates

Clock [MMM MLl Cloek M LML ML L
PR T e Y s Y s Y e Y S S s T s Y oy Y e Yy U

B 1 | R S R B__| L L L
c_____ I e - c_r——— 1.
0 | 1 o 1 I
1 __ 1 1 i 1
2 1 L 2 1
3 1 [3 1
4 i 4 1
> 1 5 I r
6 1 6 1 L
7 1 71 1

(b) Count-up mode (c) Count-down mode

m Decoding gates for a 3-bit binary ripple counter

@ Digital Principles and Applications

If these eight gates are connected to the up-down counter shown in Fig. 10.5, the decoded waveforms will
appear exactly as shown in Fig. 10.7b, provided the counter is operating in the count-up mode. If the counter
is operated in the count-down mode, the decoded waveforms will appear as in Fig. 10.7c. In this case, if state
0 is considered the first event, then state 7 is the second event, then state 6, and so on, down to state 1. Clearly
the counter is counting downward in decimal notation from 7 to 0 and then beginning again at 7.

(4 : lm Show how to use a S4LS11, triple 3-input AND gate to decode states 1, 4, and 6 of the
counter in Fig. 10.5,

Solution The logic diagram and pinout fora S4LS1}
is given i Fig. 10.8, The correct Boolean expressions
for the desired states are | = CBA, 4= CHA, and 6=
CBA . Wiring from.the counter flip-flop outputs to the.
chip is given in Fig. 10.8. S o

Let’s take a more careful look at the waveforms
generated by the counter in Fig. 10.5 as it operates
in’the' count-up ‘tode. The clock and each flip-flop
output are redrawn in Fig, 10.9, and the propagation; '~
delay time of each flip-flop is taken into account: Ne- - -
tice carefully that the clock is the trigger for flip-flop -
A/uand the 4 waveform is this delayed by ¢, fromthe |
negative clock traissition: For refererice pimposes, the: =+ -
‘complement of 4, 4 ; is also shown: Naturalty itis the™ :

“eRBCLNHITOrimage of 4. 0 ie e L _

Since A acts as the trigger for B, the B waveform is -~ 5.
-delayed by one flip-flop delay time from the negative .
trapsition of A. Similarly, the C waveform is delayed = = S
by 4, from each negative transition of B. '_ e B e _

At first glance, these delay-times would seem to offer no more serious problem than a speed limitation for the
counter, but a closer examination reveals a much more serious problems: When the decoding gates in Fig. 10.7 are
connected to this counter {or, indeed, when decoding gates are connected 16 any ripple counter), glitches may appear
&t the outputs of one or more of the gates. Consider, for instance, the gate used to decode state 6. The proper Boolean
expression is 6 = CBA . So, in Fig. 10.9 the correct output waveform for this gate is high only when C=1,8=1,
and 4 =]. : ‘ . - foh e ek L

. But look at the glitch that occurs when the counter progresses fromm state 7 to state 0. On the time line, A goes low
(A goes high) at point a. Because of flip-fiop delay time, however, B does not g0 low until point b on the time line!
Thus between points a.and b on the time line we have the condition C = 1, B=1, and 4 = 1—therefore, the gate output
is high, and we have a glitch! Look at the waveform 6 =CBA. = = =° DT '

Depending on how the decoder gate outputs are used, the glitches (or unwanted pulses) may or may ‘not be a
problem. Admittedly the glitches are only a few nanoseconds wide and may even be very difficult to observe on an
-oscilloscope. But TTL is very fiast, and TTL circuits will respond to even the smallest glitches—usually when you

 Jeast expect it, and always st unwanted times! Therefore, you must beware to avoid this condition. There arc at least
~two solutions to the glitch problem. One method involves strobing the gates: we discuss that technique here. A second
method is to use synchronous counters; we consider that topic in the next section. - . o '
~ Consider using a 4-input AND gate to decode state 6 as shown in Fig. 10.9b, where the clock is now used as a
strobe, An examination of the waveforms in this figure clearly reveals that the clock is low between points a and & on
the time line. Since the clock must be high for the gate output to be high, the glitch caanot possibly occur! On the other

a0l

Counters @

=i, andtbewawiormwaprsemdyasnshwld,Noﬁce
: iﬁgcmwﬁmw@t‘m

- SYNCHRONOUS COUNTERS

The ripple counter is the simplest to build, but there is a limit to its highest operating frequency. As previously
discussed, each flip-flop has a delay time. In & ripple counter these delay times are additive, and the total
“settling” time for the counter is approximately the delay time times the total number of flip-flops. Furthermore,
there is the possibility of glitches occurring at the output of decoding gates used with a ripple counter. The
first problem fully and the second problem, to some extent can be overcome by the use of a synchronous
parallel counter. The main difference here is that every flip-flop is triggered in synchronism with the clock,
Note that strobing as the solution to glitches has been discussed before in a separate subsection of Section
7.7 of Chapter 7.

The construction of one type of parallel binary counter is shown in Fig. 10.10, along with the truth table
and the waveforms for the natural count sequence. Since each state corresponds to an equivalent binary
number {or count), we refer to each state as a count from now on. The basic idea here is to keep the J and X

@ Digital Principles and Applications

e
S A —J B I‘L —J C}—
Clock E)——c» D——o
UL K i Lk B 1k T
(@)
C| B | A |Count
Olofof O Timeabcdefghi
0]J]0]1 1
ol 9o ; Count 0*10 2* 3'&4i 5t6¢7t0i
S IO) A Clock =1 M ML LM
11010 4 A
11011 5
1{1}e] 6 B r i |
t| 11| 7 c___
01010 0

()

Mod-8 binary counter with parallel clock input

inputs of each flip-flop high, such that the flip-flop will toggle with any clock NT at its clock input. We then
use AND gates to gate every second clock to flip-flop B, every fourth clock to flip-flop C, and so on. This
logic configuration is often referred to as “steering logic” since the clock pulses are gated or steered to each
individual flip-flop.

The clock is applied directly to flip-flop 4. Since the JK flip-flop used responds to a negative transition
at the clock input and toggles when both the J and X inputs are high, flip-flop A will change state with each
clock NT.

Whenever 4 is high, AND gate X is enabled and a clock pulse is passed through the gate to the clock
input of flip-flop B. Thus B changes state with every other clock NT at points b, d, £, and % on the time line,
Since, there is an additional AND gate delay for the clock at B flip-flop in comparison to 4 flip-flop, it is not
a paratlel counter in a strict sense of the term.

Since AND gate Y is enabled and will transmit the clock to flip-flop C only when both 4 and B are high,
flip-flop C changes state with every fourth clock NT at points d and % on the time line,

Examination of the waveforms and the truth table reveals that this counter progresses upward in a natural
binary sequence from count 000 up to count 111, advancing one count with each clock NT, This is a mod-8
parallel or synchronous binary counter operating in the count-up mode.

Let’s see if this counter configuration has cured the glitch problem discussed previously. The waveforms
for this counter are expanded and redrawn in Fig. 10.11, and we have accounted for the individual flip-flop
propagation times. Study these waveforms carefully and note the following:

1. The clock NT is the mechanism that toggles each flip-flop.

2. Therefore, whenever a flip-flop changes state, it toggles at exactly the same time as all the other flip-
flops—in other words, all the flip-flops change states in synchronism!

3. Asaresult of the synchronous changes of state, it is not possible to produce a glitch at the output of a
decoding gate, such as the gate for 6 shown in Fig. 10.11. Therefore, the decoding gates need not be
strobed. All the decoding gates in Fig. 10.7 can be used with this counter without fear of glitches!

Counters @

Time

Clock

%

hN

i

1.
T

-

T

-

) I X
i

—

T
|
ar
i}

7

é

O
——

You should take time to compare these waveforms with those generated by the ripple counter as shown
in Fig. 10.9,

A paratlel up-down counter can be constructed in a fashion similar to that shown in Fig. 10.12. In any
parallel counter, the time at which any flip-flop changes state is determined by the states of all previous flip-
flops in the counter. In the count-up mode, a flip-flop must toggle every time all previous flip-flops are ina 1
state, and the clock makes a transition. In the count-down mode, flip-flop toggles must occur when all prior
flip-flops are in a 0 state.

The counter in Fig. 10.12 is a synchronous 4-bit up-down counter. To operate in the count-up mode, the
system clock is applied at the count-up input, while the count-down input is held low. To operate in the count-
down mode, the system clock is applied at the count-down input while holding the count-up input low.

X X,
Count J 4 J J Dp
up »3 Z] > 23 (>
Count — _
down K 4 K X D
Y, £

Note : All Jand X inputs are tied to +V .

(a) Logic diagram

(b} Count up waveforms

@ Digital Principles and Applications

{c) Count down waveforms

Synchronous, 4-bit up-down counter

Holding the count-down input low (at ground) will disable AND gates Y|, 15, and ¥3. The clock applied
at count-up will then go directly into flip-flop 4 and will be steered into the other flip-flops by AND gates X,
X2, and X;. This counter will then function exactly as the previously discussed paralle]l counter shown in Fig.
10.10. The only difference here is that this is a mod-16 counter that advances one count with each clock NT,
beginning with 0000 and ending with 1111, The correct waveforms are shown in F ig. 10.12b.

If the count-up line is held low, the upper AND gates X, A3, and X; are disabled. The clock applied at
input count-down will go directly into flip-flop A and be steered into the following flip-flops by AND gates
Yl!)z 2, and Y- 3.

Flip-flop 4 will toggle each time there is a clock NT as shown in F ig. 10.12¢c. Each time A is high, AND
gate ¥y will be enabled and the clock NT will toggle flip-flop B at points a, ¢, e, g, and so on. Whenever both
A and B are high, AND gate ¥, is enabled, and thus a clock will be steered into flip-flop C at points a, e,
m, and g. Similarly, AND gate ¥; will steer a clock into flip-flop D only when A, B,and ¢ are all high. Thus
flip-flop D will toggle at points a and 7 on the time line. The waveforms in Fig. 10.12¢ clearly show thai the
counter is operating in a count-down mode, progressing one count at a time from 1111 to 0000.

If you examine the logic diagram for the 54/74193 TTL circuit shown in Fig. 10.13, you will see that
it uses steering logic just like the counter in Fig. 10.12. This MSI circuit is a synchronous 4-bit up-down

Inputs Cutputs Inputs
D" " " Data Data
, Ve A Clear Borrow Caryload C D
192,193, 'LS.192, ‘L5193, ﬁa [_IEI ml r1_3l IEI ﬁl‘l m‘l m

(Top view) L 1T I I T 7

A4 Clear Borrow Carry Load €

B 74193 D
Count Count

O Oy do/\\wn u Oc Oy

Logic: low input to load sets 0, = A, I ! I l | l
00-B, 0o C.d 0, < O] 2T G (4] T Te] T2 18]
Data Qp 0, CowntCount 0. @, GND
B “Y———down wp ‘“——
[mput Outputs “Tts—’ Outputs
pu

{a) Pinout

54/74193

Counters @

’ ’ s
193, 'L193, ‘L5193 a3)
| - Borrow output

(1
= - Carry output
(15)

Data input A f
(4) r—D o 51—+ Guput 0
Count down —[>c :j) ' A

Count up @DC

n

Data input B l—D

2
| Oy) Output O
o7 _
[QB
(10)

Data input C |
=y L @

| Oc Output G

9 “

. (
Data input D |
Clear >0 FD)

i Zn Output 0,
T _
Op

(b) Logic

(Continued)

@ Digitaf Principles and Applications

‘193, ’L.193, ‘L8193 Binary counters
Typical clear, load, and count sequences

Illustrated below is the following sequence.
1. Clear outputs to zero.
2. Load (preset) to binary thirteen.
3. Count up to fourteen, fifteen, carry, zero, one, and two.
4. Count down to one, zero, borrow, fifteen, fourteen, and thirteen.

Clear 1
1
Load '
I
1
]

B T
Data :

Comntup T T LTI
Countdown — 1§ {11 salninlninline
i S N s SO O oy Oy N
Outputs o : : : E ; E :
S B s pa IR U N
o) I I 1 . i
3J 1 1

I
i
Borrow i ' L] I
, tol N 4 15 ¢ 1 2 1 0 15 14 13
Sequence illustrated —Pmy — A Count up Count down
Clear Preset

Notes: A. Clear overrides load, data, and count inputs.
B. When counting up, count-down input must be high; when counting down, count-up input must be high.

(c) Waveforms for 54/74193

(Continued)

counter that can also be cleared and preset to any desired count—attributes that we discuss later. For now, you
should carefully examine the steering logic for each flip-flop and study the OR gate and the two AND gates
at the input of the OR gate used to provide the clock to each flip-flop.

The waveforms for the 54/74193 are exactly the same as those shown in Fig. 10.12, except that the flip-
flop outputs change states when the clock makes a low-to-high transition. Note carefully that the external
clock (applied at either the count-up or the count-down input) passes through an inverter before being applied
to the AND-OR-gate logic of each flip-flop clock input.

‘: W Write a Boolean expression for the AND gate connected to the lower leg of the OR gate that
drives the clock input to flip-flop Op in the 54/74193,

Counters @

x = (count-up clock) (Q(Pp)(Qc) ‘

A paraliel up-down counter can be formed by using a slightly different logic scheme, as shown in Fig. 10.14.
Remember that in a parallel counter, the time at which any flip-flop changes state is determined by the states of all
previous flip-flops in the counter. In the count-up mode, a ftip-flop must toggle every time all previous fiip-flops are
in a 1 state, and the clock makes a transition. In the count-down mode, flip-flop toggles must occur when all prior
flip-flops are in a 0 state, g :

Solution ~ The correct expression is

This particular counter works in an irhibit mode, since each flip-flop changes state on a clock NT pro-
vided its J/ and K inputs are both high; a change of state will not occur when the J and X inputs are low. We

Count up
Yo
b J D
b
K K D
gL
Clock
Count down
(a)
Count up D|c|B|4|Count
¢C|l0|0]0O 0
ol 0|01 1
ojfoj1]|o 2
Count down ololili 3
0l E]1010 4
o101 5
ofp1]11]90 6
o111l 7
100} 0O 8
tj1ojo0l1 9
1|10(170] 10
1jof1]1 11
111[(0]06](12
11150113
11 111]0](14
1 1 1 1 15
0101010 0
(b)

Parallel up-down counter

@ Digital Principles and Applications

might consider this is *look-ahead logic,” since the mode of operation occurs in a strict time sequence as
follows:

1. Establish a level on the J and K inputs (low or high)
2. Letthe clock transition high to low
3. Look at the flip-flop output to determine whether it toggled.

To understand the logic used to implement this counter, refer to the truth table shown in
Fig. 10.14b,

A is required to change state each time the clock goes low, and flip-flop 4 therefore has both its J and X
inputs held in a high state. This is true in both the count-up and count-down modes, and thus no other logic
1s necessary for this flip-flop.

In the count-up mode, 8 is required to change state each time A4 is high and the clock goes low. Whenever
the count-up line and 4 are both high, the output of gate X; is high. Whenever either input to Z 18 high, the
output is high. Therefore, the J and K inputs to flip-flop B are high whenever both count-up and 4 are high.
Then, in the count-up mode, a clock NT will toggle B each time A is high, such as in going from count 1 to
count 2, or 3 to 4, and so on.

In the count-down mode, B must change state each time A is high and the clock goes low. The output
of gate Y is high, and thus the ./ and K inputs to flip-flop B are high whenever A and count-down are high,
Thus, in the count-down mode, B changes state every time A is high and the clock goes fow—going from 0
to 15, or from 14 to 13, etc.

In the count-up mode, a clock NT must toggle C every time both 4 and B are high (transitions 3 to 4, 7
to 8, 11 to 12, and 15to 0). The output of gate X; is high whenever both 4 and B are high and the count-up
line is high. Thus, the J/ and K inputs to flip-flop C are high during these times and C changes state during the
needed transitions.

In the count-down mode, C is required to change state whenever both A and B are high. The output of
gate Y, is high any time both A and B are high, and the count-down line is high. Thus the J and X inputs to
flip-flop C are high during these times, and C then changes state during the required transitions—that is, 0 to
15,12to 11,8 to 7, and 4 to 3.

In the count-up mode, D must toggle every time A, B, and C are all high. The output of gate X3 is high,
and thus the J and X inputs to flip-flop D are high whenever 4, B, and C and count-up are all high. Thus D
changes state during the transitions from 7 to 8 and from 15 to 0.

In the count-down mode, a clock NT must toggle D whenever 4, B, and C are all high. The output of gate
Y3 is high, and thus the J and X inputs to flip-flop I are high whenever A, B, and C and count-down are all
high. Thus D changes state during the transitions from 0 to 15 and from 8 to 7. The count-up and count-down
waveforms for this counter are exactly like those shown in Fig. 10.12.

Take a look at the logic diagram for the 54/74191 TTL MSI circuit shown in Fig. 10.15. This is a
synchronous up-down counter. A careful examination of the AND-OR-gate logic used to precondition the J
and X inputs to each flip-flop will reveal that this counter uses look-ahead logic exactly like the counter in
Fig. 10.14. Additional logic allows one to clear or preset this counter to any desired count, and we study these
functions later. For now, carefully compare the logic diagram with the counter in Fig. 10.14 to be certain you
understand its operation.

Notice carefully that the clock input passes through an inverter before it is fed to the individual flip-flops.
Thus the outputs of the four master-slave flip-flops will change states only on low-to-high transitions of the
input clock. Typical waveforms are given in Fig. 10.15. Incidentally, these are precisely the same waveforms
one would expect when using the 54/74193 discussed previously,

Counters @

- “ Xamp le _ _ 6 Write a Boolean expression for the 4-input AND gate connected to the lower leg of the OR
gate that conditions the J and X inputs to the &p flip-flop in a 54/74191.

Solution The correct logic expression is

= (down—up) (QA)(QB)(QC) (enable)

Inputs . Outputs Inputs
f""""_"A’—"""_\

" Data " Ripple Max/ " Data Data |
Vec A Clockclock min Load C D

J or N dual-in-line el [15] sl (31 [z} i [io] [9]

or W flat package | I & | 1 !
(top view) - 4 g Ripple Max/ Load C
clock ~ min
B 74193 - D
Asynchronous inputs: ' Down/
lowinputtolead -~ V' ' 1Oy @4 G w O O
sets 0, = A, 0p =B, : 17] P

Qc=CoandOp=P. T 2] [3] [4] 18] L&l [[&]
R . Data Qp O, EmableDown/ O, £, GND
B \ﬂ_l e s

G
A Outputs \......_._V_EJ Outputs
Input Inputs

54/74191 {contmued on: next page)

S . | - (@D SELE-T1EST)
5. How does a parallel (synchronous) counter differ from a serial (asynichronous) counter?

6. Why are decoding gate glitches eliminated in a synchronous counter? .

7. Does the 74193 change state with PTs or with NTs? :

10.4 CHANGING THE COUNTER MODULUS

Counter Modulus

At this point, we have discussed asynchronous (ripple) counters and two different types of synchronous
(parallel) counters, all of which have the ability to operate in either a count-up or count-down mode. All of
these counters progress one count at a time in a strict binary progression, and they all have a modulus given
by 2", where n indicates the number of flip-flops. Such counters are said to have a “natural count™ of 2".

A mod-2 counter consists of a single flip-flop; a mod-4 counter requires two flip-flops, and it counts
through four discrete states. Three flip-flops form a mod-8§ counter, while four flip-flops form a mod-16
counter. Thus we can construct counters that have a natural count of 2, 4, 8, 16, 32, and so on by using the
proper number of flip-flops.

It is often desirable to construct counters having a modulus other than 2, 4, 8, and so on. For example, a
counter having a modulus of 3, or 5, would be useful. A small modulus counter can always be constructed

@ Digital Principles and Applications

‘191, ‘L5191 Binary counters
(14)
- 5 P ‘ 1) Rippiectock
ipple cloc
12 Max/min output

. (13)
Data input A I

Preset 3
@ D] J O Output @,
Enable G > > K
kS
Clear

(1}
Data input B
1 > 1

Preset - (2)
l J Qg - Output O
—> CK _

K U
Clear

(10)
Data input C
T > —

Preset (6)
— J gc Output -
o> CK _
| K O
Clear

1

(L))
Data input D D

1[Preset (7}
J Op Output Q0
—a> CK

K O
Clear

11 :1), i
LT)EH()

(Continued)

Counters @

‘191, ‘LS191 Binary counters
Typical load, count and inhibit sequences

Mlustrated below is the following sequence.
1. Load {preset) to binary thirteen.
2. Count up to fourteen, fifteen (maxiinum), zero, one, and two.
3. Inhibit
4. Count down to one, zero {minimum), fifteen, fourteen, and thirteen.

1
i
:
|
' | ——
- I i
) 1 : 1
QD_______’_E_E—| P —
1! 1]
Max/ming "1 i1 | P 1
i o
Ripple clock _ " T 1| ! L
13l 14 15 0 12 2 1211 0 15 14 13
| | l— Countup —s{<Inhibit~] j+—— Count down —={
Load

from a larger modulus counter by skipping states. Such counters are said to have a modified count. It is first
necessary to determine the number of flip-flops required. The correct number of flip-flops is determined
choosing the lowest natural count that is greater than the desired modified count. For example, a mod-7
counter requires three flip-flops, since 8 is the lowest natural count greater than the desired modified count

Indicate how many flip-flops are required to construct each of the following counters: (a)
mod-3, (b} mod-6, and (¢) mod-9.

Solution

a. The lowest natural count greater than 3 is 4. Two flip-flops provide a natural count of 4. Therefore, it requires at
least two flip-flops to construct a mod-3 counter. '

@ Digital Principles and Applications

b. Constraction of a mod-6 counter requires at least three flip-flops, since 8 is the lowest natural count greater than
5. o
¢. A mod-9 counter requires at least four flip-flops, since 16 is the lowest natural count greater than 9.

A single flip-flop has a natural count of 2; thus we could use a single flip-flop to construct a mod-2 counter,
and that’s all. However, a two flip-flop counter has a natural count of 4. Skipping one count will lead to a
mod-3 counter. So, two flip-flops can be used to construct either a mod-4 or mod-3 counter.,

Similarly, a three-flip-flop counter has a natural count of 8, but by skipping counts we can use three flip-
flops to construct a counter having a modulus of 8, 7, 6, or 5. Note that counters having a modulus of 4 or 3
could also be constructed, but these two counters can be constructed by using only two flip-flops.

y 0.8) What modulus counters can be constructed with the use of four flip-flops?

Solution A four-flip-flop counter has a natural count of 16. We can thus construct any counter that has a modulus
between 16 and 2, inclusive. We might choose to use four flip-flops only for counters having a modulus between 16
and 9, since only three flip-flops are required for a modulus of less than 8, and only two are required for a modulus
of less than 4. : S

A Mod-3 Counter

There are a great many different methods for constructing a counter having a modified count. A counter
can be synchronous, asynchronous, or a combination of these two types; furthermore, there is the decision
of which count to skip. For instance, if a mod-6 counter using three flip-flops is to be constructed, which
two of the eight discrete states should be skipped? Our purpoese here is not to consider all possible counter
configurations and how to design them; rather, we devote our efforts to one or two designs widely used in
TTL M5 Ameod-3 counter is considered in this section and a mod-5 in the next section, and then we consider
the use of presettable counters to achieve any desired modulus.

The two flip-flops in Fig. 10.16 have been connected to provide a mod-3 counter. Since two flip-flops have
a natural count of 4, this counter skips one state. The waveforms and the truth table in Fig. 10.16 show that
this counter progresses through the count sequence 00, 01, 10, and then back to 00. It clearly skips count 11.
Here’s how it works:

1. Prior to point @ on the time Jine, 4 = ¢ and B = (. 4 negative clock transition at a will cause:

a. 4 to toggle to a 1, since its S and X inputs are high
b. B to reset to 0 (it’s already a 0), since its J input is low and its X input is high

2. Prior to point # on the time line, 4 = 1, and B = 0. A negative clock transition at b will cause:

a. A to toggle to a 0, since its J and K inputs are high
b. B to toggle to a 1, since its J and K inputs are high

3. Prior to point ¢ on the time line, 4 = 0 and B = 1. A negative clock transition at ¢ will cause;
a. 4 to reset to 0 (it’s already (), since its Jinput is low and its X input is high
b. B to reset to 0 since its J input is low and its K input is high
4. The counter has now progressed through all three of its states, advancing one count with each negative
clock transition.

This two-flip-flop mod-3 counter can be considered as a logic building block as shown in Fig. 10.16d.
It has a clock input and outputs at 4 and B. It can be considered as a divide-by-3 block, since the output

Counters @

L . a b ¢
Time
S oA J B Clock — —
Clock_, & —a> i
Yeco—ik 4 Feco—g B 4 [~

B [

]

A
(a) Logic diagram {b) Waveforms

Clock —~ Mod-3

]
A4 B
(@) Logic bleck

Mod-3 counter

waveform at B (or at A} has a period equal to three times that of the clock—in other words, this counter
divides the clock frequency by 3. Notice that this is a synchronous counter since both flip-flops change state
in synchronism with the clock.

A Mod-6 Counter

If we consider a basic flip-fiop to be a mod-2 counter, we see that a mod-4 counter (two flip-flops in series) is
simply two mod-2 counters in series. Similarly, a mod-8 counter is simply a 2 X 2 X 2 connection, and so on.
Thus a great number of higher-modulus counters can be formed by using the product of any number of lower-
modulus counters. For instance, suppose that we connect a flip-flop at the B output of the mod-3 counter in
Fig. 10.16. The result is a (3 X 2 = 6) mod-6 counter as shown in Fig. 10.17. The output of the single flip-flop
is labeled C. Notice that it is a symmetrical waveform, and it also has a frequency of one-sixth that of the
input clock. Also, this can no longer be considered a synchronous counter since flip flop C is triggered by
flip-flop B; that is, the flip-flops do not all change status in synchronism with the clock.

e

—— J o

Clock —| Mod-3 | Clock [| [LML LML
Lo e K 4 T I .

[‘ 8 1 1 L

I N S—

(a) 3 x 2 Mod-6 counter (b) Waveforms

L]

b
o
o

Digital Principtes and Applications

Draw the waveforms you would expect from the mod-6 counter by connecting a single
flip-flop in front of the mod-3 counter in Fig. 10.16.

Solution The resulting counter is 2 2 X 3 = mod-6 couniter that has the waivefpms shown in Fig. 10.18. Notice that
B now has a period equal to six clock periods, but it is not symmetrical. ’ '

7 op— Sl .
Clock P Mod-3

K 0
-
| - Vo
o o 4 B

(a) 2 x 3 Mod-6 counter

The 54/7492A

The 54/7492A ("92A) in Fig. 10.19 is a TTL divide-by-12, MSI counter. A careful examination of the logic

diagram will reveal that flip-flops Op, Oc, and Oy are exactly the same as the 3 x 2 counter in Fig. 10.17.

Thus if the clock is applied to input B of the *32 A and the outputs are taken at O, (¢, and Op, this is a mod-6
. counter. : .

On the other hand, if the clock is applied at input 4 and {0, is connected to input B, we havea 2 x 3 x 2
mod-12 counter. The proper truth table for the mod-12 configuration is given in Fig. 10.19b, Again, this must
be considered as an asynchronous counter since all flip-flops do not change states at the same time. Thus there
is the possibility of glitches occurring at the outputs of any decoding gates used with the counter.

ample 10.10) Use the truth table for the "92A to write a Boolean expression for a gate to decode count 8.

Solution The correct expression is “8” = Op Q=08 0.

At this point, we can construct counters that have any natural count (2, 4, 8, 16, etc.} and, in addition, a
mod-3 counter. Furthermore, we can cascade these counters in any combination, such as 2x2,2x 3,3 x 4,
and so on. So far we can construct counters having a modulus of 2, 3, 4, 6, 8, 9, 12, and so on. Therefore, let’s
consider next a mod-5 counter.

Counters @

‘92A, ‘L5892 Count sequence

{See Note C)
c Qutput
» B ount —mmm———
924, L5392) Op Oc 05 O,
14) J Q———0y 0L L L L
Input A———————————ab (K 1 | L L L H
(CKA) K 2L L H L
3| L L H H
F‘—T . sl H L L
1) 5L H L H
(1) 7 2 Qg 6 |H L L L
Input B b CK 7\1\H L L H
(CKB) K 8 |H L H L
i 9 | H L H H
10 |#H H L L
N |H H L H
9 (b) Truth table
I—J Q QC
o CK mput A 92A. 'LS92, (Top view)
K 9 (CKAYNC Q4 Op GND Q¢ @p
1T [14_[13] l?l ITI [19] F?_I [3]
8
7 0 (3) o 9y Gy Op QQc
—a D f—
P CK 7492A
R.. (8 K —op> B Ry
0(1) 7 Ry
RO(ZJED_' |()

L] T2 (3] Ta] [s] [T T7]
Input B NC NC NC Vg Rooy Roy
(CKB) positive logic: See function tables,
Note: Output Q, connected to input B

{c¢) Pinout

54/7492A

-
:

(PRSELF-TEST)

8. How many flip-flops are required to construct a mod-12 counter? _
9. Three flip-flops are available. What modulus counters could be constructed?

. 10.5 DECADE COUNTERS .

A Mod-5 Counter

The three-flip-fiop counter shown in Fig. 10.20 has a natural count of 8, but it is connected in such a way that
it will skip over three counts. It will, in fact, advance one count at a time, through a strict binary sequence,
beginning with 000 and ending with 10{; therefore, it is a mod-5 counter. Let’s see how it works.

@ Digital Principles and Applications

C{B| A4 |Count

olol1 1 Clock [T F1LITLILITT
ol1]o0] 2 A_ L
011 1 3 B i

110} 0 4 C

0[O0} O 0

(a) (b

+VCC o - ’
L > [Clock — Mod-5
J 4 —i.J B J CH
Clock & —op> o>
T |k 4] Yk B £ €)
4 B C
(c) (d) Logic block

The waveforms show that flip-flop 4 changes state each time the clock goes negative, except during the
transition from count 4 to count 0. Thus, flip-flop 4 should be triggered by the clock and must have an inhibit
during count 4—that is, some signal must be provided during the transition from count 4 to count 0. Notice
that C is high during all counts except count 4. If C is connected to the J input of flip-flop 4, we will have
the desired inhibit signal. This is true since the J and X inputs to flip-flop 4 are both true for all counts except
count 4; thus the flip-flop triggers each time the clock goes negative. However, during count 4, the . side is
low and the next time the clock goes negative the flip-flop will be prevented from being set. The connections
which cause flip-flop 4 to progress through the desired sequence are shown in Fig. 10.20.

The desired waveforms (Fig. 10.20b) show that flip-flop B must change state each time A goes negative.
Thus the clock input of flip-flop B will be driven by 4 (Fig. 10.20c).

If flip-flop C is triggered by the clock while the J input is held low and the X input high, every clock pulse
e et it. Now, if the J input is high only during count 3, C will be high during count 4 and low during all
@sounts. The necessary levels for the J input can be obtained by ANDing flip-flops 4 and B. Since A and
B are both high only during count 3, the J input to flip-flop C is high only during count 3. Thus, when the
clock goes negative during the transition from count 3 to count 4, flip-flop C will be set. At all other times,
the .7 input to flip-flop C is low and is held in the reset state. The complete mod-5 counter is shown in Fig.
10.20.

In constructing a counter of this type, it is always necessary to examine the omitted states to make sure that
the counter will not malfunction. This counter omits states 5, 6, and 7 during its normal operating sequence.
There is however, a very real possibility that the counter may set up in one of these omitted (illegal) states
when power is first applied to the system. It is necessary to check the operation of the counter when starting
bl &dich of the three illegal states to ensure that it progresses into the normal count sequence and does not
‘bedsttieinoperative.

Counters @

Begin by assuming that the counter is in state 5 (CBA = 101). When the next clock pulse goes low, the
following events occur;

1. Since C is low, flip-flop A resets. Thus 4 changes froma 1 to a 0.

2. When A goes from a 1 to a 0, flip-flop B triggers and B changes fromaOtoa 1.

3. Since the J input to flip-flop C'is low, flip-flop C is reset and C changes froma 1 to a 0.

4. Thus the counter progresses from the illegal state 5 to the legal state 2 (CBA = 010) after one clock.

Now, assume that the counter starts in the illegal state 6 (CBA = 110). On the next negative clock transi-
tion, the following events occur:

1. Since C is low, flip-flop 4 is reset. Since 4 is already a 0, it just remains a 0.

2. Since 4 does not change, flip-flop B does not change and B remains a 1.

3. Since the J input to flip-flop C is low, flip-flop C is reset and C changes froma 1 to a 0.

4. Thus the counter progresses from the illegal state 6 to the legal state 2 after one clock transition.

Finally, assume that the counter begins in the illegal state 7 (CBA = 111). On the next negative clock
transition, the following events occur:

1. Since C is low, flip-flop A is reset and 4 changes froma 1 toa 0.

2. Since A changes from a 1 to a 0, flip-flop B triggers and B changes from a 1 to a 0.

3. The Jinput to flip-flop C is high; therefore, flip-flop C toggles froma 1 to a 0.

4. Thus the counter progresses from the illegal count 7 to the legal count 0 after one clock transition.

None of the three illegal states will cause the counter to malfunction, and it will automatically work itself
out of any illegal state after only one clock transition.

A Mod-10 Counter

This mod-5 counter configuration can be considered as a logic block as shown in Fig. 10.20d and can be used
in cascade to construct higher-modulus counters. For instance, a 2 X 5 or a 5 x 2 will form a mod-10 counter,
or decade counter.

Show a method for constructing a 5 x 2 {mod-10) decade counter.

Solution A decade counler can be constructed by using the mod-5 counter in Fig. 10.20 and adding an additional
flip-flop, labeled D, as shown it Fig. 10. 21. The appropriate waveforms and truth table are included. Notice that the

COunter Progresses through a btqmmry count sequence and does not count in a straight binary sequence.

A decade counter could be formed just as easily by using the mod-5 counter in Fig. 10.20 in conjunction
with a flip-flop, but connected in a 2 x 5 configuration as shown in Fig. 10.22. The truth table for this
configuration, and the resulting waveforms are shown. This is still a mod-10 (decade) counter since it still
has 10 discrete states. Notice that this counter counts in a straight binary sequence from 0000 up to 1001, and
then back to 0000,

The 7490A

The 54/7490A is a TTL MSI decade counter. Its logic diagram, truth table, and pinout are given in Fig. 10.23.
A careful examination will reveal that flip-flops Op, O, and O, form a mod-5 counter exactly like the one in
Fig. 10.20. Notice, however, that flip-flop (2, in the "90A is an RS flip-flop that has a direct connection from
its 2 output back to its R input. The net result in this case is that Oy, behaves exactly like a JK flip-flop.

Digital Principles and Applications

—J D

1]

J C

B

J AH—% +—K B

ee

Clock

{2)

State 0

12 3 4 5 6 7.8 9 0 1
Clock [L LI LML L
ATl 1 1L It
g [1 r
i1 [
|

@~ N e o O

SO 0D DD

L e e e = e B S R R

CoOoOm oD OO —

D C| B | A|State

COOCOO —

{c)

{b)

T
[
-
c
=
=
<
@
=]
]
]
o
©
<«

B

DI C| B | A |Count

o

P -

0

= o

(b)

(a)

J

b) O

J B

i/ 4

+Fee

Clock

(@

E 3
]
-
c
=
=]
]
X
]
]
]
@
©
Lo

Counters @
Ry ﬂ ‘904, 'L90, ‘'LS90 "90A, 'L90, 'LS90 '90_A, ’_L90, L8590
(1) BCD count sequence Bi-quinary (5-2)
R9(2) T A {See note A) (See note B)
12
o J Q-——LQA Output Output
Input (14} &k Count Count
4 © Op Oc Up &4 @ Op Qc Up
0 L L L L 0 L L L L
1 |L L L H {1 |L L L H
2 L L H L 2 L L H L
(9 3 |L L H H 3 |L L H H
Input_(1) J 9 Op 4L #H L L 4|L H L L
B * CK 5|t H L H 5 |H L L L
K 6 L H H L 6 H L L H
7{L H H H 71H L H L
8 H L L L 8 H L H H
9 |H L L H ¢ |H H L L
4 (b) Truth table
(8) ‘904, 'L90, "L590 (Top view)
J @ Q¢ Iput ANC Q4 ©Op GND Oy Oc
b [l [[[i] [0 (] [8]
K [|
g, Op Op
—al> 4 QC—'
7490A
—> B R9(2)—
|_' Royy Ry Ro1y
(i1 [|
1 Js e 0 T 12T (2] (@] 3] L& [T
RCKf Input B Ry)y Romy NC Ve Ropy Rogy
Ry 2) o Positive logic: See function tables
RO(Z)-—)’ Note: A output O, connected to input 5
(3) B output), connected to input 4

(a) Logic
54/7490A
 — ? .

D— - D D
C c— c—
B — 7490 B 74?0 B— 7490
A— A— A—

Hundreds Tens Units

(c) Pinout

Reset pulse

It

Cascaded 7490’s can count to 999

@ Digital Principles and Applications

If the system clock is applied at input 4 and Q, is connected to input B, we have a true binary decade
counter exactly as in Fig. 10.22. On the other hand, if the system clock is applied at input B and Qp, is
connected to input 4, we have the biquinary counter as discussed in Example 10.11. Take time to study the
logic diagram and the truth table for the *90A; it is widely used in industry, and the time spent will be well
worth your while,

An interesting application using three 54/7490A decade counters is shown in Fig. 10.24. The three *90A
counters are connected in series such that the first one (on the right) counts the number of input pulses at its
clock input. We call it a units counter.

The middle *90A will advance one count each time the units counter counts 10 input pulses, because D
from the units counter will have a single negative transition as that counter progresses from count 9 to 0. This
middle block is then called tens counter.

The left "90A will advance one count each time the tens counter progresses from count 9 to 0. This will
occur once for every 100 input pulses. Thus this block is called the Aundreds counter.

Now the operation should be clear. This logic circuit is capable of counting input pulses from one up to
999. The procedure is to reset all the *90As and then count the number of pulses at the input to the units
counter. This cascaded arrangement is widely used in digital voltmeters, frequency counters, etc., where a
decimal count is needed.

It should be pointed out that the 54/7490A is only one of a number of TTL MSI decade counters.
In particular, the 54/74176 is another popular asynchronous decade counter, and the 54/74160,
54/74162, 54/74190, and 54/74192 are all popular synchronous decade counters. Each has particular attributes
that you should consider, and a study of their individual data sheets would be worthwhile.

10. What is a decade counter? L
H. What is the difference between the 5 x 2 decade counter in Fig: 10.21 and the 2 x 5 decade
counter in Fig. 10.227 - ' fL T

. 10.6 PRESETTABLE COUNTERS .

Up to this point we have discussed the operation of counters that progress through a natural binary count
sequence in either a count-up or count-down mode and have studied two counters that have a modified
count—a mod-3 and a mod-5. With these basic configurations, and with cascaded combinations of these
basic units, it is possible to construct counters having moduli of 2, 3, 4, 5,6,7,8,9, 10, and so on. The ability
to quickly and easily construct a counter having any desired modulus is so important that the semiconductor
industry has provided a number of TTL MSI circuits for this purpose. The presettable counter is the basic
building block that can be used to implement a counter that has any modulus.

Nearly all the presettable counters available as TTL MSI are constructed by using four flip-flops, and
they are generally referred to as 4-bit counters. They may be either synchronous or asynchronous. When
connected such that the count advances in a natural binary sequence from 0000 to 1111, it is simply referred
to as a binary counter. For instance, the 54/74161 and the 54/74163 are both synchronous binary counters
that operate in a count-up mode. The 54/74191 and the 54/74193 are also synchronous binary counters, but
they can operate in either a count-down or count-up mode.

